MacLean - Baker IMS

MacLean - Baker IMS
Using Skyline to Analyze Data-Containing Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry Dimensions. Journal of The American Society for Mass Spectrometry
ProteomeXchange: PXD010650
  • Organism: Bos taurus, Saccharomyces cerevisiae
  • Instrument: 6560 Q-TOF LC/MS
  • SpikeIn: Yes
  • Keywords: ion mobility spectrometry, Skyline, data independent acquisition, proteomics
  • Submitter: Brendan MacLean
Abstract
Recent advances in ion mobility spectrometry (IMS) have illustrated its power in the structural characteristics of a molecule, especially when coupled with other separations dimensions such as liquid chromatography (LC) and mass spectrometry (MS). However, these three separation techniques together greatly complicate data analyses, so making better informatics tools are essential for assessing the resulting data. In this manuscript, Skyline was adapted to analyze LC-IMS-(CID)-MS data and determine the effect of adding the IMS dimension into the normal LC-MS molecular pipeline. For the evaluation, a tryptic digest of bovine serum albumin (BSA) was spiked into a yeast digest at 7 different concentrations, and calibration curves for both the precursor and all-ions fragments were analysesassessed with and without utilizing the IMS dimension. Skyline was able to rapidly analyze the MS and MS/MS data from 38 of the BSA peptides and in all cases the addition of the IMS dimension removed noise from interfering peptides resulting is in better calibration curves with higher correlation and lower limits of detection. This study presents an important informatics development since currently most LC-IMS-(CID)-MS data is studied manually and cannot be analyzed quickly. Since these evaluations require days for the analysis of only a few target molecules in a limited number of samples, it is unfeasible to evaluate hundreds of targets in numerous samples. Thus, this study showcases Skyline’s ability to work with multidimensional LC-IMS-(CID)-MS data and provide biological and environmental insights rapidly.
Experiment Description
To evaluate the effect of utilizing the IMS dimension in multidimensional analyses and determine the performance of Skyline in analyzing the LC-IMS-(CID)-MS data, tryptically digested BSA was spiked at seven concentrations (100 pM, 1 nM, 5 nM, 10 nM, 100 nM, 500 nM, and 1 µM) into a tryptic yeast digest with a final peptide concentration of 0.1 µg/µL. Yeast was picked as the matrix of interest since most of the peptide components have a similar concentration range, providing more interfering peaks than samples with a higher dynamic range (i.e. plasma). MS1 and MS/MS all-ions fragmentation spectra were alternated every other second during each 100 minute LC run. Skyline was then utilized to extract the ion chromatograms and calculate peak areas for 38 different tryptic BSA target peptides in four ways including: LC-MS precursor extraction, LC-IMS-MS precursor extraction; LC-MS fragment extraction and LC-IMS-MS fragment extraction.
Sample Description
Bovine serum albumin (BSA) was purchased from Sigma-Aldrich (St. Louis, MO) and a tryptically digested yeast protein extract was purchased from Promega (Madison, WI). The BSA was tryptically digested and brought up to a concentration of 0.5 µg/µL in water. The BSA was then spiked into the tryptically digested yeast extract at 7 different concentrations (100 pM, 1 nM, 5 nM, 10 nM, 50 nM 100 nM, 500 nM, and 1 µM), where a final concentration of 0.1 µg/µL was utilized for the yeast peptides in all samples. A sample of BS peptides in water was also prepared at 100 nM to develop the Skyline parameters for the target peptides. Datasets for each sample were acquired by LC-IMS-MS using a Waters NanoAcquity HPLC system and an Agilent 6560 IM-QTOF MS platform (Agilent Technologies, Santa Clara) [1, 2]. The HPLC system utilized reverse phase columns prepared in-house by slurry packing 3 µm Jupiter C18 (Phenomenex, Torrence, CA) into 40 cm x x 360 µm o.d. x 75 µm i.d. fused silica (Polymicro Technologies Inc., Phoenix, AZ) using a 1-cm sol-gel frit for media retention. Trapping columns were prepared similarly by slurry packing 5-µm Jupiter C18 into a 4-cm length of 150 µm i.d. fused silica and fritted on both ends. Sample injections (5 µL) were trapped and washed on the trapping columns at 3 µL/min for 20 min prior to alignment with analytical columns. Mobile phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid acetonitrile (B) and were operated at 300 nL/min with a 100-min gradient profile as follows (min:%B); 0:5, 2:8, 20:12, 75:35, 97:60, 100: 85. The LC was directly connected to the Agilent NanoESI source. Upon entering the source of the Agilent 6560 IM-QTOF MS platform, ions were passed through the inlet glass capillary, focused by a high pressure ion funnel, and accumulated in an ion funnel trap. Ions were then pulsed into the 78.24 cm long IMS drift tube filled with ~ 3.95 torr of nitrogen gas, where they travelled under the influence of a weak electric field (10-20 V/cm). Ions exiting the drift tube were refocused by a rear ion funnel and the collision energy was alternated between 0 V and 29 V for acquisition of MS and all ions fragmentation spectra. The ions were then detected with the TOF MS and their arrival time (tA) were recorded for the 100-3200 m/z range.
Created on 3/8/18, 9:43 AM
Clustergrammer Heatmap
 
Download
20240429_OG_Dataset6.sky.zip2024-05-01 05:14:221019357910
20240429_OG_Dataset6_filtered.sky.zip2024-05-01 05:13:15108024010
20240429_U87MGNG_Dataset4_filtered.sky.zip2024-05-01 05:10:09104714110
20240429_U87MGNG_Dataset4.sky.zip2024-05-01 05:03:35104891,46710
20240429_PermFet_Dataset3_filtered.sky.zip2024-05-01 05:00:38103761,12810
20240429_Fetuin_Dataset1.sky.zip2024-05-01 03:45:151024072010
20240429_GSL_Dataset5_2024-05-01.sky.zip2024-05-01 03:43:371029287610
20240429_GSL_Dataset5_filtered.sky.zip2024-05-01 03:42:40107723110
2023_10_13_Dap8_PW_V_Singh_DGDGs_2023-12-04_15-29-42.sky.zip2024-04-30 20:58:36101829160
2023_10_13_Dap8_PW_V_Singh_LysylPGs_2023-12-04_15-28-21.sky.zip2024-04-30 20:58:3610187260
2023_10_13_Dap8_PW_V_Singh_PGs_2023-12-04_15-27-38.sky.zip2024-04-30 20:58:36101828190
2023_08_31_N_CSH_V_Singh_Strains_DGDGs_2023-12-04_15-25-28.sky.zip2024-04-30 20:58:36101829190
2023_08_31_N_CSH_V_Singh_Strains_LysylPGs_2023-12-04_15-22-27.sky.zip2024-04-30 20:58:3610187290
2023_08_31_N_CSH_V_Singh_Strains_PGs_2023-12-04_15-16-51.sky.zip2024-04-30 20:58:36101829190
2022_01_25_P_N315_and_Dap8_LPG_precursors_2023-04-13_14-50-41.sky.zip2024-04-30 20:58:3610181860
2021_09_17_N315_and_Dap8_isotope_labeled_16_2023-04-13_14-14-56.sky.zip2024-04-30 20:58:361051226120
2021_09_17_N315_and_Dap8_isotope_labeled_15_2023-04-13_14-00-31.sky.zip2024-04-30 20:58:361051248120
20240429_CSFNG_Dataset2_2024-05-01.sky.zip2024-04-30 19:10:16101,4804,44010
20240429_CSFNG_Dataset2_filtered.sky.zip2024-04-30 19:02:1910164810
20240429_PermFet_Dataset3.sky.zip2024-04-30 10:09:10103,37010,11010
20240429_Fetuin_Dataset1_filtered.sky.zip2024-04-30 10:08:4310298710
figure7_DIA_samples.sky.zip2024-04-09 15:12:49221212513321
figure6_PRM_system_suitability_2024-02-05_19-48-55.sky.zip2024-04-09 15:12:42217171894817
figure6_DIA_samples_2024-02-06_13-03-26.sky.zip2024-04-09 15:12:272212125115721
figure5_DIA_samples.sky.zip2024-04-09 15:12:18221212511521
figure5_PRM_system_suitability.sky.zip2024-04-09 15:12:1821717189617
figure4_PRM_system_suitability.sky.zip2024-04-09 15:12:09217171891417
figure4_DIA_samples.sky.zip2024-04-09 15:12:09221212513221
figure3_PRM_system_suitability.sky.zip2024-04-09 15:12:04217171893717
figure2_PRM_system_suitability_2024-02-02_13-59-23.sky.zip2024-04-09 15:11:54217171898517
NV0001_Mouse-Skin_mProphet_Panorama_2024-03-09_19-20-18.sky.zip2024-03-10 20:30:291,6595,7905,79028,904340
XW0008_Cas9Myc_DIAassayLIB_OmBcells_17Nov2023_2024-02-24_08-51-18.sky.zip2024-02-24 12:56:485,20383,67483,675605,040240
XW0009_DIAassayLIB_OmBcells_17Nov2023_2024-02-23_18-35-50.sky.zip2024-02-23 22:06:575,20383,64583,647604,720190
AutoQC-lumos-SysS-MouAD-PFC-C2-B5-B7.sky.zip2024-02-20 07:53:5618894148
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B07.sky.zip2024-02-18 11:31:099,778127,624127,624966,347120
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B06.sky.zip2024-02-18 10:45:259,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B05.sky.zip2024-02-18 09:51:569,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B04.sky.zip2024-02-18 01:14:219,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B03.sky.zip2024-02-18 00:22:039,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B02.sky.zip2024-02-17 23:29:529,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B01.sky.zip2024-02-17 18:20:009,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B28.sky.zip2024-02-17 17:30:039,778127,624127,624966,34760
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B27.sky.zip2024-02-17 16:57:559,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B26.sky.zip2024-02-17 15:06:069,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B25.sky.zip2024-02-17 14:11:069,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B24.sky.zip2024-02-17 13:17:049,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B23.sky.zip2024-02-17 10:45:369,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B22.sky.zip2024-02-17 09:52:589,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B21.sky.zip2024-02-17 09:01:129,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B20.sky.zip2024-02-17 01:24:329,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B19.sky.zip2024-02-17 00:31:539,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B18.sky.zip2024-02-16 23:42:139,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B17.sky.zip2024-02-16 21:59:109,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B16.sky.zip2024-02-16 21:08:449,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B15.sky.zip2024-02-16 19:45:379,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B14.sky.zip2024-02-16 18:50:509,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B13.sky.zip2024-02-16 17:05:369,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B12.sky.zip2024-02-16 16:13:309,778127,624127,624966,347160
XW0008-Myc248_DIAassayLIB_OmBcells_17Nov2023_2024-02-16_10-02-13.sky.zip2024-02-16 15:02:065,20383,67483,675605,040240
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B11.sky.zip2024-02-16 11:03:589,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B10.sky.zip2024-02-16 10:07:519,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B09.sky.zip2024-02-16 09:14:539,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B08.sky.zip2024-02-16 08:20:059,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B07.sky.zip2024-02-16 01:08:409,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B06.sky.zip2024-02-16 00:17:379,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B05.sky.zip2024-02-15 23:29:389,778127,624127,624966,347160
XW0008_nanos3_DIAassayLIB_OmBcells_17Nov2023_2024-02-15_17-02-46.sky.zip2024-02-15 21:13:165,20383,67483,675605,040240
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B04.sky.zip2024-02-15 16:37:369,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B03.sky.zip2024-02-15 14:42:299,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B02.sky.zip2024-02-15 13:44:359,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B01.sky.zip2024-02-15 12:45:409,778127,624127,624966,347160
AutoQC-lumos-PCs-MouAD-PFC-C2-B5-B7.sky.zip2024-02-14 16:42:50214141734414
AutoQC-lumos-PCs-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:42:33214141736414
AutoQC-lumos-PCs-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:42:15214141736414
AutoQC-lumos-PCs-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:42:00214141738014
AutoQC-lumos-PCs-MouAD-PFC-C1-B25-B28.sky.zip2024-02-14 16:41:37214141735414
AutoQC-lumos-PCs-MouAD-PFC-C1-B21-B24.sky.zip2024-02-14 16:41:00214141736414
AutoQC-lumos-PCs-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 16:40:44214141736514
AutoQC-lumos-PCs-MouAD-PFC-C1-B13-B16.sky.zip2024-02-14 16:40:28214141736414
AutoQC-lumos-PCs-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 16:40:08214141734714
AutoQC-lumos-SysS-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:10:1618894178
AutoQC-lumos-SysS-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:06:2518894168
AutoQC-lumos-SysS-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:02:2318894228
AutoQC-lumos-SysS-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 15:59:5018894188
AutoQC-lumos-SysS-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 14:48:3818894108
ZipChip_HR_Metabolomics_2024Protocol_2024-02-05_17-24-05.sky.zip2024-02-05 14:24:2810082159478
22AminoAcids_Fully13CLabeled_2024-01-29_14-30-52.sky.zip2024-01-29 11:32:141044493622
RBD_M_Glyco_2024-01-25_15-29-41.sky.zip2024-01-26 17:23:2672923972,38290
20240104_Neg_FMT_MCBAs_isoRemove_Cleaned_Final_2024-01-25_21-40-19.sky.zip2024-01-26 16:43:4710100300560
20231220_Neg_FMT_BA_Full_reduce_Res50_High_final_2024-01-04_15-44-59.sky.zip2024-01-26 16:43:474051121760
P179_UNCSet1_ACE_v0p3_2024-01-24_22-42-18.sky.zip2024-01-24 19:51:4423034963724250
P179_UNCSet2_ACE_v0p3_2024-01-24_22-37-25.sky.zip2024-01-24 19:40:1117021336726160
New_iRBD2024-01-15 23:30:52334747942920
Paired_CSF_Plasma_Serum2024-01-15 23:30:5233474794600
Initial_Targeted_Proteomics2024-01-15 23:30:52334747944410
TPAD_VL_CSF_PRTC_APOA1_2024-01-07_23-01-46.sky.zip2024-01-07 23:08:4934646424120
TPAD-CSF-SP3_1-5.sky.zip2024-01-05 06:03:432,90823,74323,743189,8953960
173_peptides_iRTs_chromatogram_library_2023-12-22_00-47-19.sky.zip2023-12-22 01:06:36311833561,08220
Figure_8B_Freiburg_ALG1-CDG-Patients_Comparison_2023-12-22_02-34-55.sky.zip2023-12-22 01:06:20226912840060
Figures_4_5_6_7_8A_Heidelberg_CDG-Patients_2023-12-22_02-32-43.sky.zip2023-12-22 01:06:202067124390140

Here we present a data set used to assess the quantitative impact of filtering by drift time during chromatogram extraction from data files collected on an IMS enabled Agilent 6560 mass spectrometer. The five Skyline documents represent:

  1. The final processing with IMS filtering applied and all peak integration manually adjusted.
  2. The final processing without IMS filtering applied and all peak integration manually adjusted.
  3. Processing with IMS filtering applied but without any manual adjustment to peak integration.
  4. Processing without IMS filtering applied and without any manual adjustment to peak integration.
  5. The original template document before any data is imported into it and before drift time filter training.

Each of the first four documents contain imported results. However, only the first two were used to assess the dynamic range and linearity of a calibration curve in the 4 cases we explored:

  1. Peak areas from chromatograms extracted from MS1 with drift time filtering.
  2. Peak areas from chromatograms extracted from MS/MS with drift time filtering.
  3. Peak areas from chromatograms extracted from MS1 without drift time filtering.
  4. Peak areas from chromatograms extracted from MS/MS without drift time filtering.

The associated report files (in Excel CSV format) are attached below and were produced by exporting the "Precursor MS1 Areas" and "Precursor Fragment Areas" reports respectively from the two final processed documents.

The Skyline documents are data files used in developing this method can be found in the Method Dev folder.

  Attached Files  
   
 2017 Filtered Precursor Fragment Areas.csv
 2017 Unfiltered Precursor MS1 Areas.csv
 2017 Unfiltered Precursor Fragment Areas.csv
 2017 Filtered Precursor MS1 Areas.csv