MacCoss - FAIMS_vs_QuadGPF_Manuscript

MacCoss - FAIMS_vs_QuadGPF_Manuscript
Comparing peptide identifications by FAIMS versus quadrupole gas phase fractionation
Data License: CC BY 4.0 | ProteomeXchange: PXD043458 | doi: https://doi.org/10.6069/dmx5-8y05
  • Organism: Homo sapiens
  • Instrument: Orbitrap Eclipse
  • SpikeIn: No
  • Keywords: high-field asymmetric waveform ion mobility spectrometry, gas phase fractionation
  • Lab head: Michael MacCoss Submitter: Danielle Faivre
Abstract
Gas phase fractionation techniques have become popular in the field of mass spectrometry to improve results without using more sample. High field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to liquid chromatography-mass spectrometry (LC-MS) has been shown to increase peptide and protein detections compared to LC-MS/MS alone. However, FAIMS has not been compared to other methods of gas phase fractionation, such as quadrupole gas phase fractionation, which leaves uncertainty about the mechanisms of improvement. The goal of this work was to assess whether FAIMS improves peptide identifications because 1) gas phase fractionation enables the analysis of less abundant signals by excluding more abundant precursors from filling the ion trap, 2) the use of FAIMS reduces co-isolation of peptides during the MS/MS process resulting in a reduction of chimeric spectra, or 3) a combination of both. To investigate these hypotheses, pooled human brain tissue samples were measured in triplicate using FAIMS gas phase fractionation, quadrupole gas phase fractionation, or no gas phase fractionation. To confirm the results, the experiment was reproduced on another instrument. On both instruments, FAIMS gas phase fractionation reduced co-isolation of peptides and generated fewer chimeric spectra even though it was less efficient at transmitting ions than quadrupole gas phase fractionation. This suggests that improvements can be made to the DDA acquisition process by excluding peptides for MS/MS that have more than one peptide isotope distribution in the isolation window.
Experiment Description
This experiment was designed to replicate a previous experiment (https://doi.org/10.1021/acs.analchem.8b02233), introduce a new control, and test the reproducibility of results on more than one instrument. Eluted peptides were analyzed with two Orbitrap Eclipse Tribrids. The two instruments examined different pooled human brain tissue samples with slightly different LC setups and gradients. Sample preparation has been described in detail previously (https://doi.org/10.1038/s41597-023-02057-7), and the nanoLC conditions can be found in the Supporting Information. Experiments without FAIMS used a 240,000 resolving power MS1 survey scan, Standard AGC Target, and Auto Maximum Injection Time, followed by MS/MS of the most intense precursors for 1 second. The MS/MS analyses were performed by 0.7 m/z isolation with the quadrupole, normalized HCD (higher-energy collisional dissociation) energy of 30%, and analysis of fragment ions in the ion trap using the “Turbo” speed scanning from 200 to 1200 m/z. Dynamic exclusion was set to 10 seconds for the 1-hour analyses and was increased to 30 seconds for the 3-hour analyses. Monoisotopic precursor selection (MIPS) was set to Peptide, maximum injection time was 35 milliseconds, AGC target was 200%, unusual charge states (unknown, +1, or >+5) were excluded, the advanced peak determination was toggled on, and the internal mass calibration was off. For FAIMS experiments, the settings were identical except the FAIMS device was used between the electrospray source and the mass spectrometer. FAIMS separations were performed with a 100 °C inner electrode temperature, 100 °C outer electrode temperature, 4.7 L/min FAIMS carrier gas flow, and −5000 V dispersion voltage (DV). The FAIMS carrier gas was N2 only. For external stepping (i.e., single CV or single quadrupole fraction) experiments, the selected CV or quadrupole fraction was applied to all scans throughout the analysis. For internal stepping experiments, each of the 3 selected CVs or quadrupole fractions was applied to sequential survey scans. The MS/MS CV was always paired with the appropriate CV from the corresponding survey scan. For the 3-hour quantitative FAIMS experiments, the survey scan MS resolving power was reduced to 120,000 to permit a cycle time of 0.6 s. The 3 selected CVs (-50, -65, and -85) were chosen based on the results in Hebert et al (https://doi.org/10.1021/acs.analchem.8b02233). The 3 quadrupole fractions were sample-specific and were chosen based on splitting the number of peptide-like features in a normal LC-MS run into thirds.
Sample Description
Briefly, two 25 μm frozen sections of human brain tissue were resuspended in 120 μl of lysis buffer containing 5% SDS, 50mM triethylammonium bicarbonate (TEAB), 2mM MgCl2, 1X HALT phosphatase, and protease inhibitors. The suspension was vortexed and briefly sonicated with a Fisher sonic dismembrator model 100 set to setting 3 for 10 s. A microtube was loaded with 30 μl of lysate and capped with a micropestle. The sample was homogenized with a Barocycler 2320EXT (Pressure Biosciences Inc.) for a total of 20 minutes at 35°C with 30 cycles of 20 seconds at 45,000 psi and 10 seconds at atmospheric pressure. Protein concentration of the homogenate was measured with a BCA assay. Fifty micrograms were added to a process control of 800 ng of yeast enolase protein (Sigma), reduced with 20 mM DTT, and alkylated with 40 mM IAA. The lysate was prepared for S-trap column (Protifi) cleaning by adding 1.2% phosphoric acid and 350 μL of binding buffer (90% Methanol, 100 mM TEAB). The acidified lysate was bound to column incrementally, followed by 3 wash steps with binding buffer to remove SDS, 3 wash steps with 50:50 methanol:chloroform to remove lipids, and a final wash step with binding buffer. Trypsin (1:10) in 50mM TEAB was added to the S-trap column for digestion at 47°C for one hour. Hydrophilic peptides were eluted with 50 mM TEAB and hydrophobic peptides were eluted with a solution of 50% acetonitrile in 0.2% formic acid. Elutions were pooled, speed vacuumed and resuspended in 0.1% formic acid. For more sample details, see Merrihew et al. (https://doi.org/10.1038/s41597-023-02057-7).
Created on 7/2/23, 11:01 PM
Clustergrammer Heatmap
 
Download
20220309_DrugTreatmentsCellLysate.sky.zip2024-06-10 13:23:20105522542
CalCurve_1ng_withBioReps.sky.zip2024-06-04 21:58:0030616150920
CalCurve_100ng.sky.zip2024-06-04 21:58:002074814814,03410
CalCurve_100ng_withBioReps.sky.zip2024-06-04 21:58:002064734733,96918
CalCurve_10ng_withBioReps.sky.zip2024-06-04 21:57:59741511511,29617
CalCurve_10ng.sky.zip2024-06-04 21:57:59751621611,3689
CalCurve_1ng.sky.zip2024-06-04 21:57:59331401401,1828
Exp_CSF_GPF_A_2024-05-06_21-16-47.sky.zip2024-06-04 11:21:151,8297,3787,37855,0401
2024-05 CSF LIT GPF-MSFragger-3.sky.zip2024-06-04 11:02:501,0825,0956,01940,4016
240207_gpf_2024-06-04_10-24-18.sky.zip2024-06-04 10:26:091,2886,98410,593126,0861
230305_ev2_prm_final_inj1_2024-06-04_07-32-10.sky.zip2024-06-04 07:36:527222,0892,08914,44942
230124_p2_neo_30min_3500targets_opt_trans_pepleveldilution_2024-06-04_06-58-16.sky.zip2024-06-04 07:04:041,0273,5013,50111,42041
CSF_neurod105_assay_individuals_manual_2024-06-03_15-26-36.sky.zip2024-06-03 15:32:081029029026,34537
Exp_CSF_MMCC_quant_all_adjBound_opttrans_nochick_2024-06-03_14-53-02.sky.zip2024-06-03 15:03:571,2058,3748,37424,93427
OT_GPF_PRM_survey_MMCC_boundaries_opttrans_nochick_2024-06-03_14-36-08.sky.zip2024-06-03 14:40:211,2801,9711,9715,80127
LIT_GPF_survey_newAlign_MMCC_boundaries_opttrans_nochick_2024-06-02_15-26-11.sky.zip2024-06-02 15:42:517982,0352,0355,99827
220220_prm_2min_opt_transitions_1overx_2024-05-29_14-25-22.sky.zip2024-05-30 19:11:0817867863,47828
220224_altis_top5_2024-05-17_20-18-34.sky.zip2024-05-30 19:11:0817867863,90628
ecoli_subset_fulllib_refined_2024-05-18_10-16-34.sky.zip2024-05-30 19:07:377772,2312,23128,2612
ecoli_subset_fulllib_2024-05-18_10-07-03.sky.zip2024-05-30 19:07:377772,5002,50831,5382
ecolihela_gpf_2024-05-18_10-05-17.sky.zip2024-05-30 19:07:371,1925,3967,42785,6731
ecoli_small_dilution_adj_bounds_opt_trans_2024-05-18_10-03-15.sky.zip2024-05-30 19:07:373863973971,37845
ecoli_large_dilution_adj_bounds_opt_trans_2024-05-18_10-01-04.sky.zip2024-05-30 19:07:374611,3021,3024,57545
ecoli_small_replicates_2024-05-18_10-00-01.sky.zip2024-05-30 19:07:373863973972,1268
ecoli_large_replicates_2024-05-18_09-59-07.sky.zip2024-05-30 19:07:374611,3021,3027,5248
P1_Neo_60SPD_DilutionCurve_Adjust_Bounds_Opt_Trans_2024-05-29_14-17-24.sky.zip2024-05-30 19:03:585788048043,59455
P1_Neo_100SPD_DilutionCurve_Adjust_Bounds_Opt_Trans_2024-05-29_14-15-58.sky.zip2024-05-30 19:03:585788048043,54255
P1_Neo_60SPD_Replicates_2024-05-29_14-14-47.sky.zip2024-05-30 19:03:585798188187,85710
P1_Neo_100SPD_Replicates_2024-05-29_14-13-46.sky.zip2024-05-30 19:03:585798188187,74010
P1_Neo_60SPD_ToAlign_Refined_2024-05-29_14-12-54.sky.zip2024-05-30 19:03:585798188187,8601
P1_Neo_100SPD_ToAlign_Refined_2024-05-29_14-11-54.sky.zip2024-05-30 19:03:585798188187,7401
P1_Neo_60SPD_Unscheduled_2024-05-16_23-19-22.sky.zip2024-05-30 19:03:5857981881812,1411
P1_Neo_100SPD_Unscheduled_2024-05-16_23-14-13.sky.zip2024-05-30 19:03:5857981881812,1411
ecoli_large_replicates_loaded_refined_2024-05-30_14-02-04.sky.zip2024-05-30 18:19:193669899894,9408
ecoli_large_replicates_loaded_2024-05-30_14-00-59.sky.zip2024-05-30 18:19:194611,3021,3027,5248
ecoli_large_replicates_2024-05-30_14-00-05.sky.zip2024-05-30 18:19:194611,3021,3027,5240
ecoli_subset_replicates_refined_cv_2024-05-30_13-58-18.sky.zip2024-05-30 18:19:197592,2662,26612,8072
ecoli_subset_replicates_refined_2024-05-30_13-57-25.sky.zip2024-05-30 18:19:197592,4372,43713,6022
ecoli_subset_replicates_2024-05-30_13-56-16.sky.zip2024-05-30 18:19:197592,4372,44130,8572
gpf_results_importer_2024-05-30_13-54-14.sky.zip2024-05-30 18:19:191,1925,3967,42785,6731
gpf_results_manual_2024-05-30_13-52-23.sky.zip2024-05-30 18:19:191,1925,3967,42785,6731
pq500_100spd_plasma_final_lightheavy_replicates_2024-05-30_13-50-10.sky.zip2024-05-30 18:16:015798181,62213,69910
pq500_60spd_plasma_final_lightheavy_replicates_2024-05-30_13-48-26.sky.zip2024-05-30 18:16:015798181,62213,87610
pq500_100spd_plasma_final_replicates_2024-05-30_13-47-38.sky.zip2024-05-30 18:16:015798188187,08110
pq500_60spd_plasma_final_replicates_2024-05-30_13-46-43.sky.zip2024-05-30 18:16:015798188186,97710
pq500_100spd_plasma_multireplicate_results_refined_2024-05-30_13-46-07.sky.zip2024-05-30 18:16:015798188187,0811
pq500_60spd_plasma_multireplicate_results_refined_2024-05-30_13-45-40.sky.zip2024-05-30 18:16:015798188186,9771
pq500_100spd_plasma_multireplicate_results_2024-05-30_13-45-07.sky.zip2024-05-30 18:16:015798188187,6512
pq500_60spd_plasma_multireplicate_results_2024-05-30_13-44-21.sky.zip2024-05-30 18:16:015798188187,6012
pq500_100spd_neat_multireplicate_results_refined_2024-05-30_13-43-42.sky.zip2024-05-30 18:16:015798188187,6891
pq500_60spd_neat_multireplicate_results_refined_2024-05-30_13-43-05.sky.zip2024-05-30 18:16:015798188187,6011
pq500_100spd_neat_multireplicate_results_2024-05-30_13-42-26.sky.zip2024-05-30 18:16:0157981881811,0881
pq500_60spd_neat_multireplicate_results_2024-05-30_13-41-26.sky.zip2024-05-30 18:16:0157981881811,0881
pq500_60spd_neat_multireplicate_2024-05-30_13-40-53.sky.zip2024-05-30 18:16:0157981881811,0880
Coho SRM for panorama_2024-05-21_11-24-52.sky.zip2024-05-21 22:55:503799993,17662
figure2_PRM_system_suitability_2024-05-16_12-43-59.sky.zip2024-05-15 22:46:1921717189133
20240429_OG_Dataset6.sky.zip2024-05-15 12:50:14101935791
20240429_OG_Dataset6_filtered.sky.zip2024-05-15 12:50:1410802401
20240429_U87MGNG_Dataset4_filtered.sky.zip2024-05-15 12:50:1410471411
20240429_U87MGNG_Dataset4.sky.zip2024-05-15 12:50:14104891,4671
20240429_PermFet_Dataset3_filtered.sky.zip2024-05-15 12:50:14103761,1281
20240429_Fetuin_Dataset1.sky.zip2024-05-15 12:50:14102407201
20240429_GSL_Dataset5_2024-05-01.sky.zip2024-05-15 12:50:14102928761
20240429_GSL_Dataset5_filtered.sky.zip2024-05-15 12:50:1410772311
20240429_CSFNG_Dataset2_2024-05-01.sky.zip2024-05-15 12:50:14101,4804,4401
20240429_CSFNG_Dataset2_filtered.sky.zip2024-05-15 12:50:141016481
20240429_PermFet_Dataset3.sky.zip2024-05-15 12:50:14103,37010,1101
20240429_Fetuin_Dataset1_filtered.sky.zip2024-05-15 12:50:141029871
20220309_DrugTreatmentsCellLysate.sky.zip2024-05-13 05:43:00105522542
IO3_library_tissue_v01D.sky.zip2024-05-08 08:09:52224121
20240429_OG_Dataset6.sky.zip2024-05-01 05:14:22101935791
20240429_OG_Dataset6_filtered.sky.zip2024-05-01 05:13:1510802401
20240429_U87MGNG_Dataset4_filtered.sky.zip2024-05-01 05:10:0910471411
20240429_U87MGNG_Dataset4.sky.zip2024-05-01 05:03:35104891,4671
20240429_PermFet_Dataset3_filtered.sky.zip2024-05-01 05:00:38103761,1281
20240429_Fetuin_Dataset1.sky.zip2024-05-01 03:45:15102407201
20240429_GSL_Dataset5_2024-05-01.sky.zip2024-05-01 03:43:37102928761
20240429_GSL_Dataset5_filtered.sky.zip2024-05-01 03:42:4010772311
2023_10_13_Dap8_PW_V_Singh_DGDGs_2023-12-04_15-29-42.sky.zip2024-04-30 20:58:3610182916
2023_10_13_Dap8_PW_V_Singh_LysylPGs_2023-12-04_15-28-21.sky.zip2024-04-30 20:58:361018726
2023_10_13_Dap8_PW_V_Singh_PGs_2023-12-04_15-27-38.sky.zip2024-04-30 20:58:3610182819
2023_08_31_N_CSH_V_Singh_Strains_DGDGs_2023-12-04_15-25-28.sky.zip2024-04-30 20:58:3610182919
2023_08_31_N_CSH_V_Singh_Strains_LysylPGs_2023-12-04_15-22-27.sky.zip2024-04-30 20:58:361018729
2023_08_31_N_CSH_V_Singh_Strains_PGs_2023-12-04_15-16-51.sky.zip2024-04-30 20:58:3610182919
2022_01_25_P_N315_and_Dap8_LPG_precursors_2023-04-13_14-50-41.sky.zip2024-04-30 20:58:361018186
2021_09_17_N315_and_Dap8_isotope_labeled_16_2023-04-13_14-14-56.sky.zip2024-04-30 20:58:36105122612
2021_09_17_N315_and_Dap8_isotope_labeled_15_2023-04-13_14-00-31.sky.zip2024-04-30 20:58:36105124812
20240429_CSFNG_Dataset2_2024-05-01.sky.zip2024-04-30 19:10:16101,4804,4401
20240429_CSFNG_Dataset2_filtered.sky.zip2024-04-30 19:02:191016481
20240429_PermFet_Dataset3.sky.zip2024-04-30 10:09:10103,37010,1101
20240429_Fetuin_Dataset1_filtered.sky.zip2024-04-30 10:08:431029871
figure7_DIA_samples.sky.zip2024-04-09 15:12:492212125133
figure6_PRM_system_suitability_2024-02-05_19-48-55.sky.zip2024-04-09 15:12:422171718948
figure6_DIA_samples_2024-02-06_13-03-26.sky.zip2024-04-09 15:12:2722121251157
figure5_DIA_samples.sky.zip2024-04-09 15:12:182212125115
figure5_PRM_system_suitability.sky.zip2024-04-09 15:12:18217171896
figure4_PRM_system_suitability.sky.zip2024-04-09 15:12:092171718914
figure4_DIA_samples.sky.zip2024-04-09 15:12:092212125132
figure3_PRM_system_suitability.sky.zip2024-04-09 15:12:042171718937
figure2_PRM_system_suitability_2024-02-02_13-59-23.sky.zip2024-04-09 15:11:542171718985

Files

The files needed to recreate the publication figures are available in the "panoramaweb_files" folder below.

 

Code

A Jupyter Notebook with the plots and the code can be found on GitHub.