MRM for validation of Brain tumor biomarkers
Ghantasala S, Pai MGJ, Biswas D, Gahoi N, Mukherjee S, Kp M, Nissa MU, Srivastava A, Epari S, Shetty P, Moiyadi A, Srivastava S. Multiple Reaction Monitoring-Based Targeted Assays for the Validation of Protein Biomarkers in Brain Tumors. Front Oncol. 2021 May 14;11:548243. doi: 10.3389/fonc.2021.548243. PMID: 34055594; PMCID: PMC8162214.
- Organism: Homo sapiens
- Instrument: TSQ Altis
- SpikeIn:
No
- Keywords:
Multiple reaction monitoring, brain tumor, cerebrospinal fluid, tumor tissue, biomarkers
-
Lab head: Sanjeeva Srivastava
Submitter: Sanjeeva Srivastava
The emergence of omics technologies over the last decade has helped in advancement of research and our understanding of complex diseases like brain cancers. However, barring genomics, no other omics technology has been able to find utility in clinical settings. The recent advancements in mass spectrometry instrumentation have resulted in proteomics technologies becoming more sensitive and reliable. Targeted proteomics, a relatively new branch of mass spectrometry-based proteomics has shown immense potential in addressing the shortcomings of the standard molecular biology-based techniques like Western blotting and Immunohistochemistry. In this study we demonstrate the utility of Multiple reaction monitoring (MRM), a targeted proteomics approach, in quantifying peptides from proteins like Apolipoprotein A1 (APOA1), Apolipoprotein E (APOE), Prostaglandin H2 D-Isomerase (PTGDS), Vitronectin (VTN) and Complement C3 (C3) in cerebrospinal fluid (CSF) collected from Glioma and Meningioma patients. Additionally, we also report transitions for peptides from proteins – Vimentin (VIM), Cystatin-C (CST3) and Clusterin (CLU) in surgically resected Meningioma tissues; Annexin A1 (ANXA1), Superoxide dismutase (SOD2) and VIM in surgically resected Glioma tissues; and Microtubule associated protein-2 (MAP-2), Splicing factor 3B subunit 2 (SF3B2) and VIM in surgically resected Medulloblastoma tissues. To our knowledge this is the first study reporting proteins from three types of brain malignancies and two different bio-specimens. Future studies involving a large cohort of samples aimed at accurately detecting and quantifying peptides of proteins with roles in brain malignancies could potentially result in a panel of proteins showing ability to classify and grade tumors. Successful application of these techniques could ultimately offer alternative strategies with increased accuracy, sensitivity and lower turnaround time thus making them translatable to the clinics.
Created on 3/11/21, 11:34 AM