Decker Lab - STAT1, STAT2, IRF9 BioIDs

Decker Lab - STAT1, STAT2, IRF9 BioIDs
Homeostatic and Interferon-induced gene expression represent different states of promoter-associated transcription factor ISGF3
ProteomeXchange: PXD013251
  • Organism: Mus musculus
  • Instrument: Q Exactive HF-X
  • SpikeIn: No
  • Keywords: Targeted MS, PRM, quantification, BioID
  • Submitter: Thomas Gossenreiter
Abstract
Host defense by the innate immune system requires the establishment of antimicrobial states allowing cells to cope with microorganisms before the onset of the adaptive immune response. Interferons (IFN) are of vital importance in the establishment of cell-autonomous antimicrobial immunity. Speed is therefore an important attribute of the cellular response to IFN. With much of the antimicrobial response being installed de novo, this pertains foremost to gene expression, the rapid switch between resting-state and active-state transcription of host defense genes. Mechanisms to meet this demand on the relevant molecular machinery include remodeling of chromatin but also changes in transcription factor interaction prior and during the IFN response. Our results show how distinct transcription factor complexes, determine the responsiveness of Interferon stimulated genes to different IRF9-containing complexes. Raw 264.7 macrophages expressing a doxycycline-inducible, myc-tagged versions of each IRF9-BirA*, STAT2-BirA* and STAT1-BirA* fusion genes were used to study complex formation in vivo. Furthermore, we extended the BioID proximity labeling by coupling it to parallel reaction monitoring to determine the degree and quantity of association between IRF9 and STATs in resting and interferon-treated macrophages.
Experiment Description
PRM assays were generated based on shotgun MS measurements acquired with the same MS instrument, selecting up to 10 high intensity proteotypic peptides for STAT1, STAT2, STAT3 and IRF9, with no missed cleavages, no methionine, and an even distribution over the chromatographic gradient. PRM assay generation was performed using Skyline. After a test run with a pooled sample showing high target protein expression, we reduced the targets to at least 5 peptides with a single charge state per protein by further optimising for best signal-to-noise and an even distribution over the gradient, resulting in a scheduled PRM assay with 4 min windows. Samples were spiked with 100 fmol Pierce Peptide Retention Time Calibration Mixture (PRTC, Thermo-Fisher) to monitor the chromatographic and nano-spray stability across the PRM measurements of all samples. Data analysis, manual validation of all peptides and their transitions (based on retention time, relative ion intensities, and mass accuracy), and relative quantification was performed in Skyline. The most intense non-interfering transition(s) of the top 5 peptides per protein were selected and their peak areas were summed up for peptide quantification (total peak area). Missing peptide intensities were imputed by random values derived from a normal distribution (down shift: median -2.15* standard dev., width: standard dev. *0.05). To correct for minor varying sample injection amounts and instrument stability over the measurements, MS1 signals of 6 stable background proteins were extracted selected based on an ANOVA analysis (q-value > 0.5, log2 intensity > 25 and standard dev. < 0.2 of MaxQuant LFQ intensities of the shot-gun measurements) and used to calculate normalization factors for the PRM dataset. After normalization, peptide intensity means were calculated for protein quantification. To ascertain significant interactions, mean log2 protein intensity ratios, standard deviation and t-test statistics were calculated for each of the target proteins.
Sample Description
BioID was performed according to a published protocol in three independent biological replicates per construct and condition. mycBioID was a gift from Kyle Roux (Addgene plasmid 35700). 5 x 106 stable Raw 264.7 cells were seeded on 15 cm dishes and treated with 0.2 µg/ml doxycycline for 24h. 50 µM biotin was added for 18 additional hours. Cells were either left untreated or stimulated for 2 h with IFN-beta or IFN-gamma or for 18 h with IFN-beta. Untreated controls were harvested at corresponding time points. Cells were washed and lysed at room temperature (lysis Buffer: 50 mMTris pH7.4; NaCL 500 mM; 0.2% SDS; EDTA 5mM + 1x protease inhibitors). Triton X-100 and 50 mMTris pH7.4 were added and the protein lysates were sonicated 2x for 30 seconds. Lysates were centrifuged for 5 minutes at full speed and supernatant were transferred to a new tube. Magnetic Pierce Streptavidin beads #88817 were washed 3x with lysis buffer. 105 µl beads were incubated with 1.3 mg of protein lysate over night at 4°C. 21 µl beads were kept for western blot analysis, the rest of the beads was used for the analysis with liquid chromatography mass spectrometry. Beads were washed at room temperature with wash buffer 1(2% SDS in H2O), wash buffer 2 (0.1% deoxycholic acid; 1% TritonX-100, 1mM EDTA, 500 mM NaCl, 50 mM HEPES; H2O) and wash buffer 3 (0.5% deoxycholic acid; 0,5% NP-40; 1 mM EDTA; 250 mM LiCl, 10 mM Tris pH7.4;H2O). Beads were washed 5 times with 50 mM Tris pH 7.4 and another two times with 50 mM ammonium bicarbonate (ABC) and then resuspended in 24 µL of 1 M urea in 50 mM ABC. 10 mM dithiothreitol (DTT) was added and the samples were incubated for 30 min at room temperature before adding 20 mM iodoacetamide and incubating for another 30 min at room temperature in the dark. Remaining iodoacetamide was quenched by adding 5 mM DTT and the proteins were digested with 300 ng (Trypsin Gold, Promega) at 37°C overnight. After stopping the digest by addition of 0.5% trifluoroacetic acid (TFA), and washing the beads with 30 µL 0.1% TFA, the supernatants were were loaded onto C18 stagetips to desalt the peptides prior to LC-MS. Peptides were separated on an Ultimate 3000 RSLC nano-flow chromatography system (Thermo-Fisher), using a pre-column for sample loading (Acclaim PepMap C18, 2 cm × 0.1 mm, 5 μm, Thermo-Fisher), and a C18 analytical column (Acclaim PepMap C18, 50 cm × 0.75 mm, 2 μm, Thermo-Fisher), applying a segmented linear gradient from 2% to 35% solvent B (80% acetonitrile, 0.1% formic acid; solvent A 0.1% formic acid) at a flow rate of 230 nL/min over 60 minutes. Eluting peptides were analyzed on a Q Exactive HF-X Orbitrap mass spectrometer (Thermo-Fisher), which was coupled to the column with a customized nano-spray EASY-Spray ion-source (Thermo-Fisher) using coated emitter tips (New Objective). For PRM data acquisition we used following MS parameters: survey scan with 60k resolution, AGC 1E6, 50 ms IT, over a range of 400 to 1300 m/z, PRM scan with 30k resolution, AGC 1E5, 300 ms IT, isolation window of 0.7 m/z with 0.2 m/z offset, and NCE of 27%.
Created on 3/26/19, 8:06 AM
Clustergrammer Heatmap
 
Download
figure7_DIA_samples.sky.zip2024-04-09 15:12:492212125133
figure6_PRM_system_suitability_2024-02-05_19-48-55.sky.zip2024-04-09 15:12:422171718948
figure6_DIA_samples_2024-02-06_13-03-26.sky.zip2024-04-09 15:12:2722121251157
figure5_DIA_samples.sky.zip2024-04-09 15:12:182212125115
figure5_PRM_system_suitability.sky.zip2024-04-09 15:12:18217171896
figure4_PRM_system_suitability.sky.zip2024-04-09 15:12:092171718914
figure4_DIA_samples.sky.zip2024-04-09 15:12:092212125132
figure3_PRM_system_suitability.sky.zip2024-04-09 15:12:042171718937
figure2_PRM_system_suitability_2024-02-02_13-59-23.sky.zip2024-04-09 15:11:542171718985
NV0001_Mouse-Skin_mProphet_Panorama_2024-03-09_19-20-18.sky.zip2024-03-10 20:30:291,6595,7905,79028,90434
XW0008_Cas9Myc_DIAassayLIB_OmBcells_17Nov2023_2024-02-24_08-51-18.sky.zip2024-02-24 12:56:485,20383,67483,675605,04024
XW0009_DIAassayLIB_OmBcells_17Nov2023_2024-02-23_18-35-50.sky.zip2024-02-23 22:06:575,20383,64583,647604,72019
AutoQC-lumos-SysS-MouAD-PFC-C2-B5-B7.sky.zip2024-02-20 07:53:561889414
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B07.sky.zip2024-02-18 11:31:099,778127,624127,624966,34712
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B06.sky.zip2024-02-18 10:45:259,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B05.sky.zip2024-02-18 09:51:569,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B04.sky.zip2024-02-18 01:14:219,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B03.sky.zip2024-02-18 00:22:039,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B02.sky.zip2024-02-17 23:29:529,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B01.sky.zip2024-02-17 18:20:009,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B28.sky.zip2024-02-17 17:30:039,778127,624127,624966,3476
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B27.sky.zip2024-02-17 16:57:559,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B26.sky.zip2024-02-17 15:06:069,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B25.sky.zip2024-02-17 14:11:069,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B24.sky.zip2024-02-17 13:17:049,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B23.sky.zip2024-02-17 10:45:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B22.sky.zip2024-02-17 09:52:589,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B21.sky.zip2024-02-17 09:01:129,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B20.sky.zip2024-02-17 01:24:329,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B19.sky.zip2024-02-17 00:31:539,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B18.sky.zip2024-02-16 23:42:139,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B17.sky.zip2024-02-16 21:59:109,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B16.sky.zip2024-02-16 21:08:449,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B15.sky.zip2024-02-16 19:45:379,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B14.sky.zip2024-02-16 18:50:509,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B13.sky.zip2024-02-16 17:05:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B12.sky.zip2024-02-16 16:13:309,778127,624127,624966,34716
XW0008-Myc248_DIAassayLIB_OmBcells_17Nov2023_2024-02-16_10-02-13.sky.zip2024-02-16 15:02:065,20383,67483,675605,04024
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B11.sky.zip2024-02-16 11:03:589,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B10.sky.zip2024-02-16 10:07:519,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B09.sky.zip2024-02-16 09:14:539,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B08.sky.zip2024-02-16 08:20:059,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B07.sky.zip2024-02-16 01:08:409,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B06.sky.zip2024-02-16 00:17:379,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B05.sky.zip2024-02-15 23:29:389,778127,624127,624966,34716
XW0008_nanos3_DIAassayLIB_OmBcells_17Nov2023_2024-02-15_17-02-46.sky.zip2024-02-15 21:13:165,20383,67483,675605,04024
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B04.sky.zip2024-02-15 16:37:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B03.sky.zip2024-02-15 14:42:299,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B02.sky.zip2024-02-15 13:44:359,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B01.sky.zip2024-02-15 12:45:409,778127,624127,624966,34716
AutoQC-lumos-PCs-MouAD-PFC-C2-B5-B7.sky.zip2024-02-14 16:42:502141417344
AutoQC-lumos-PCs-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:42:332141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:42:152141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:42:002141417380
AutoQC-lumos-PCs-MouAD-PFC-C1-B25-B28.sky.zip2024-02-14 16:41:372141417354
AutoQC-lumos-PCs-MouAD-PFC-C1-B21-B24.sky.zip2024-02-14 16:41:002141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 16:40:442141417365
AutoQC-lumos-PCs-MouAD-PFC-C1-B13-B16.sky.zip2024-02-14 16:40:282141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 16:40:082141417347
AutoQC-lumos-SysS-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:10:161889417
AutoQC-lumos-SysS-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:06:251889416
AutoQC-lumos-SysS-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:02:231889422
AutoQC-lumos-SysS-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 15:59:501889418
AutoQC-lumos-SysS-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 14:48:381889410
ZipChip_HR_Metabolomics_2024Protocol_2024-02-05_17-24-05.sky.zip2024-02-05 14:24:28100821594
22AminoAcids_Fully13CLabeled_2024-01-29_14-30-52.sky.zip2024-01-29 11:32:1410444936
RBD_M_Glyco_2024-01-25_15-29-41.sky.zip2024-01-26 17:23:2672923972,3829
20240104_Neg_FMT_MCBAs_isoRemove_Cleaned_Final_2024-01-25_21-40-19.sky.zip2024-01-26 16:43:471010030056
20231220_Neg_FMT_BA_Full_reduce_Res50_High_final_2024-01-04_15-44-59.sky.zip2024-01-26 16:43:47405112176
P179_UNCSet1_ACE_v0p3_2024-01-24_22-42-18.sky.zip2024-01-24 19:51:4423034963724
P179_UNCSet2_ACE_v0p3_2024-01-24_22-37-25.sky.zip2024-01-24 19:40:1117021336726
New_iRBD2024-01-15 23:30:5233474794292
Paired_CSF_Plasma_Serum2024-01-15 23:30:523347479460
Initial_Targeted_Proteomics2024-01-15 23:30:5233474794441
TPAD_VL_CSF_PRTC_APOA1_2024-01-07_23-01-46.sky.zip2024-01-07 23:08:493464642412
TPAD-CSF-SP3_1-5.sky.zip2024-01-05 06:03:432,90823,74323,743189,895396
173_peptides_iRTs_chromatogram_library_2023-12-22_00-47-19.sky.zip2023-12-22 01:06:36311833561,0822
Figure_8B_Freiburg_ALG1-CDG-Patients_Comparison_2023-12-22_02-34-55.sky.zip2023-12-22 01:06:2022691284006
Figures_4_5_6_7_8A_Heidelberg_CDG-Patients_2023-12-22_02-32-43.sky.zip2023-12-22 01:06:20206712439014
Figure_S5_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-59-41.sky.zip2023-12-22 01:06:2021112146
Figure_9_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-53-52.sky.zip2023-12-22 01:06:2021418404
Figures_3_and_S3_HEK_293T_Fibroblasts_HeLa_2023-12-22_01-03-03.sky.zip2023-12-22 01:06:2023701303989
20210301 Calibration Dev_DilutionOil_2023-12-11_10-57-35.sky.zip2023-12-20 00:34:263482654
20210607 Calibration Curve_DilutionDigest_2023-12-11_10-50-40.sky.zip2023-12-20 00:34:2634824108
20210212 Low range exploration 140K-fragmod_Pub_2023-12-08_16-04-13.sky.zip2023-12-20 00:34:263482456
HeatedOilSpike-LowTemp_HighTemp_Combined_Final_2022-05-26_12-00-47.sky.zip2023-12-20 00:34:26591548204
20200715_PeptideSpecificity_SignalRatio_2022-05-25_16-33-02.sky.zip2023-12-20 00:34:2611202212044
20200622_PeptideSpecificityTest_2022-05-25_16-30-20.sky.zip2023-12-20 00:34:2614252713545
20191112_Diff-TempConc_Oil-Spike_24pep_2022-05-25_14-24-35.sky.zip2023-12-20 00:34:2611242715040
20191007_HeatedOilSpike_Extraction_method_24pep_2022-05-25_14-16-21.sky.zip2023-12-20 00:34:2611242715032
20190904_Organic_Aqueous_Extraction_Oil_Spike_24pep_2022-05-25_14-12-26.sky.zip2023-12-20 00:34:2611242715636
SILK_P017_Plasma_F3b_2023-12-11_07-46-49.sky.zip2023-12-15 00:39:411,86816,28945,884142,15326
SILK_P017_Plasma_F2b_2023-12-11_07-23-37.sky.zip2023-12-15 00:39:411,76314,99741,829129,38726
SILK_P017_Plasma_F1b_2023-12-05_14-53-37.sky.zip2023-12-15 00:39:411,1147,68520,06662,08826
SILK_P017_CSF_F5_a_2023-12-05_14-40-01.sky.zip2023-12-15 00:39:414741,5886,23019,28414
SILK_P017_CSF_F4_a_2023-12-05_12-53-48.sky.zip2023-12-15 00:39:412,28014,33844,104136,37414
SILK_P017_CSF_F3_a_2023-12-05_12-18-30.sky.zip2023-12-15 00:39:411,98012,01335,601109,99914
SILK_P017_CSF_F2_a_2023-12-05_11-46-34.sky.zip2023-12-15 00:39:412,11615,37639,746122,89914
SILK_P017_CSF_F1_a_2023-12-05_11-23-42.sky.zip2023-12-15 00:39:411,4084,1508,04524,92114
September 21 Import V1 (Samples with IS) w Cal Curve_Blanks Deleted_2023-12-01_11-40-59.sky.zip2023-12-02 23:51:3320262687