Decker Lab - STAT1, STAT2, IRF9 BioIDs

Decker Lab - STAT1, STAT2, IRF9 BioIDs
Homeostatic and Interferon-induced gene expression represent different states of promoter-associated transcription factor ISGF3
ProteomeXchange: PXD013251
  • Organism: Mus musculus
  • Instrument: Q Exactive HF-X
  • SpikeIn: No
  • Keywords: Targeted MS, PRM, quantification, BioID
  • Submitter: Thomas Gossenreiter
Abstract
Host defense by the innate immune system requires the establishment of antimicrobial states allowing cells to cope with microorganisms before the onset of the adaptive immune response. Interferons (IFN) are of vital importance in the establishment of cell-autonomous antimicrobial immunity. Speed is therefore an important attribute of the cellular response to IFN. With much of the antimicrobial response being installed de novo, this pertains foremost to gene expression, the rapid switch between resting-state and active-state transcription of host defense genes. Mechanisms to meet this demand on the relevant molecular machinery include remodeling of chromatin but also changes in transcription factor interaction prior and during the IFN response. Our results show how distinct transcription factor complexes, determine the responsiveness of Interferon stimulated genes to different IRF9-containing complexes. Raw 264.7 macrophages expressing a doxycycline-inducible, myc-tagged versions of each IRF9-BirA*, STAT2-BirA* and STAT1-BirA* fusion genes were used to study complex formation in vivo. Furthermore, we extended the BioID proximity labeling by coupling it to parallel reaction monitoring to determine the degree and quantity of association between IRF9 and STATs in resting and interferon-treated macrophages.
Experiment Description
PRM assays were generated based on shotgun MS measurements acquired with the same MS instrument, selecting up to 10 high intensity proteotypic peptides for STAT1, STAT2, STAT3 and IRF9, with no missed cleavages, no methionine, and an even distribution over the chromatographic gradient. PRM assay generation was performed using Skyline. After a test run with a pooled sample showing high target protein expression, we reduced the targets to at least 5 peptides with a single charge state per protein by further optimising for best signal-to-noise and an even distribution over the gradient, resulting in a scheduled PRM assay with 4 min windows. Samples were spiked with 100 fmol Pierce Peptide Retention Time Calibration Mixture (PRTC, Thermo-Fisher) to monitor the chromatographic and nano-spray stability across the PRM measurements of all samples. Data analysis, manual validation of all peptides and their transitions (based on retention time, relative ion intensities, and mass accuracy), and relative quantification was performed in Skyline. The most intense non-interfering transition(s) of the top 5 peptides per protein were selected and their peak areas were summed up for peptide quantification (total peak area). Missing peptide intensities were imputed by random values derived from a normal distribution (down shift: median -2.15* standard dev., width: standard dev. *0.05). To correct for minor varying sample injection amounts and instrument stability over the measurements, MS1 signals of 6 stable background proteins were extracted selected based on an ANOVA analysis (q-value > 0.5, log2 intensity > 25 and standard dev. < 0.2 of MaxQuant LFQ intensities of the shot-gun measurements) and used to calculate normalization factors for the PRM dataset. After normalization, peptide intensity means were calculated for protein quantification. To ascertain significant interactions, mean log2 protein intensity ratios, standard deviation and t-test statistics were calculated for each of the target proteins.
Sample Description
BioID was performed according to a published protocol in three independent biological replicates per construct and condition. mycBioID was a gift from Kyle Roux (Addgene plasmid 35700). 5 x 106 stable Raw 264.7 cells were seeded on 15 cm dishes and treated with 0.2 µg/ml doxycycline for 24h. 50 µM biotin was added for 18 additional hours. Cells were either left untreated or stimulated for 2 h with IFN-beta or IFN-gamma or for 18 h with IFN-beta. Untreated controls were harvested at corresponding time points. Cells were washed and lysed at room temperature (lysis Buffer: 50 mMTris pH7.4; NaCL 500 mM; 0.2% SDS; EDTA 5mM + 1x protease inhibitors). Triton X-100 and 50 mMTris pH7.4 were added and the protein lysates were sonicated 2x for 30 seconds. Lysates were centrifuged for 5 minutes at full speed and supernatant were transferred to a new tube. Magnetic Pierce Streptavidin beads #88817 were washed 3x with lysis buffer. 105 µl beads were incubated with 1.3 mg of protein lysate over night at 4°C. 21 µl beads were kept for western blot analysis, the rest of the beads was used for the analysis with liquid chromatography mass spectrometry. Beads were washed at room temperature with wash buffer 1(2% SDS in H2O), wash buffer 2 (0.1% deoxycholic acid; 1% TritonX-100, 1mM EDTA, 500 mM NaCl, 50 mM HEPES; H2O) and wash buffer 3 (0.5% deoxycholic acid; 0,5% NP-40; 1 mM EDTA; 250 mM LiCl, 10 mM Tris pH7.4;H2O). Beads were washed 5 times with 50 mM Tris pH 7.4 and another two times with 50 mM ammonium bicarbonate (ABC) and then resuspended in 24 µL of 1 M urea in 50 mM ABC. 10 mM dithiothreitol (DTT) was added and the samples were incubated for 30 min at room temperature before adding 20 mM iodoacetamide and incubating for another 30 min at room temperature in the dark. Remaining iodoacetamide was quenched by adding 5 mM DTT and the proteins were digested with 300 ng (Trypsin Gold, Promega) at 37°C overnight. After stopping the digest by addition of 0.5% trifluoroacetic acid (TFA), and washing the beads with 30 µL 0.1% TFA, the supernatants were were loaded onto C18 stagetips to desalt the peptides prior to LC-MS. Peptides were separated on an Ultimate 3000 RSLC nano-flow chromatography system (Thermo-Fisher), using a pre-column for sample loading (Acclaim PepMap C18, 2 cm × 0.1 mm, 5 μm, Thermo-Fisher), and a C18 analytical column (Acclaim PepMap C18, 50 cm × 0.75 mm, 2 μm, Thermo-Fisher), applying a segmented linear gradient from 2% to 35% solvent B (80% acetonitrile, 0.1% formic acid; solvent A 0.1% formic acid) at a flow rate of 230 nL/min over 60 minutes. Eluting peptides were analyzed on a Q Exactive HF-X Orbitrap mass spectrometer (Thermo-Fisher), which was coupled to the column with a customized nano-spray EASY-Spray ion-source (Thermo-Fisher) using coated emitter tips (New Objective). For PRM data acquisition we used following MS parameters: survey scan with 60k resolution, AGC 1E6, 50 ms IT, over a range of 400 to 1300 m/z, PRM scan with 30k resolution, AGC 1E5, 300 ms IT, isolation window of 0.7 m/z with 0.2 m/z offset, and NCE of 27%.
Created on 3/26/19, 8:06 AM
Clustergrammer Heatmap
 
Download
XA00305PRMPUb.sky2025-09-17 09:40:082729291329
XA00305PRMPST.sky2025-09-17 09:31:222828281359
Rzemieniewski_P155_13_CEP14_2025-04-01_08-09-30.sky.zip2025-09-15 16:43:312151514315
Rzemieniewski_P155_13_CEP4_15mer_and_16mer_2025-04-01_08-06-18.sky.zip2025-09-15 16:43:313141412914
SPE_recovery_part 2.sky.zip2025-09-11 14:19:0522459026612
SPE recovery_part 1_A1AT, A1AG, IgA.sky.zip2025-09-11 14:19:05611226612
Intra- and interday precision_part 2.sky.zip2025-09-11 14:19:0222459027418
Intra- and interday precision_part 1_ A1AT, A1AG, IgA.sky.zip2025-09-11 14:19:02611226718
Proteomic analysis of 98 UCP samples.sky.zip2025-09-11 14:18:46285611234098
Proteomic analysis of 98 MP samples.sky.zip2025-09-11 14:18:46285611234098
Calibration_part 2.sky.zip2025-09-11 14:18:4122454914445
Calibration_part 1_A1AT, A1AG, IgA.sky.zip2025-09-11 14:18:39611226448
Standard_Add_2025-09-11_13-43-33.sky.zip2025-09-11 13:43:472361825
Val_Stability_2025-09-11_13-42-55.sky.zip2025-09-11 13:43:0223618240
Val_Interference_2025-09-11_13-41-27.sky.zip2025-09-11 13:41:332361845
ProINS_Imprecision_2025-09-11_13-40-32.sky.zip2025-09-11 13:40:402361898
AbLotComparison_2025-09-11_13-39-42.sky.zip2025-09-11 13:39:493282416
Buffers_Ab_2025-09-11_13-38-31.sky.zip2025-09-11 13:38:371363522
IAA_peptides_2025-09-11_13-36-33.sky.zip2025-09-11 13:36:4243123879
Buffers_digest_2025-09-11_13-13-51.sky.zip2025-09-11 13:13:581363522
PFAS and Autoimmune Disease Skyline Document - NTA and SSA_2025-09-02_11-27-20.sky.zip2025-09-02 15:17:57602929203
PFAS and Autoimmune Disease Skyline Document - Absolute Quant_2025-09-02_11-26-32.sky.zip2025-09-02 15:17:57505353286
TPAD_totalCSF-multiNF-DIANN_Batch8_annotated.sky.zip2025-08-28 12:23:582,50424,98830,183239,58254
humanMVs_expt3_pepsInAll3_2025-07-21_15-21-49.sky.zip2025-08-14 00:10:264,33830,60130,601211,47929
humanMVs_expt2_pepsInAll3_2025-07-21_15-14-15.sky.zip2025-08-14 00:10:264,33830,60130,601211,52421
humanMVs_expt1_pepsInAll3_2025-07-21_15-01-07.sky.zip2025-08-14 00:10:264,33830,60130,601209,46334
humanMVs_expt3_2025-07-21_14-42-08.sky.zip2025-08-14 00:10:266,07565,24665,246444,45729
humanMVs_expt2_2025-07-21_12-54-40.sky.zip2025-08-14 00:10:266,19360,86260,862421,24621
humanMVs_expt1_2025-07-21_12-28-41.sky.zip2025-08-14 00:10:265,76359,38259,382409,06134
METRIC_Eclipse_PSB_All_QCs_2025-08-08_23-10-58.sky.zip2025-08-08 20:11:061666237
Kang_et_al_Proteomics_FigS3_2025-08-06_12-31-18.sky.zip2025-08-07 17:30:53618187130
ecoli_large_replicates_loaded_refined_2024-05-30_14-02-04.sky.zip2025-08-05 20:49:443669899894,9408
ecoli_large_replicates_loaded_2024-05-30_14-00-59.sky.zip2025-08-05 20:49:444611,3021,3027,5248
ecoli_large_replicates_2024-05-30_14-00-05.sky.zip2025-08-05 20:49:444611,3021,3027,5240
ecoli_subset_replicates_refined_cv_2024-05-30_13-58-18.sky.zip2025-08-05 20:49:447592,2662,26612,8072
ecoli_subset_replicates_refined_2024-05-30_13-57-25.sky.zip2025-08-05 20:49:447592,4372,43713,6022
ecoli_subset_replicates_2024-05-30_13-56-16.sky.zip2025-08-05 20:49:447592,4372,44130,8572
gpf_results_importer_2024-05-30_13-54-14.sky.zip2025-08-05 20:49:441,1925,3967,42785,6731
gpf_results_manual_2024-05-30_13-52-23.sky.zip2025-08-05 20:49:441,1925,3967,42785,6731
pq500_100spd_plasma_final_lightheavy_replicates_2024-05-30_13-50-10.sky.zip2025-08-05 20:48:155798181,62213,69910
pq500_60spd_plasma_final_lightheavy_replicates_2024-05-30_13-48-26.sky.zip2025-08-05 20:48:155798181,62213,87610
pq500_100spd_plasma_final_replicates_2024-05-30_13-47-38.sky.zip2025-08-05 20:48:155798188187,08110
pq500_60spd_plasma_final_replicates_2024-05-30_13-46-43.sky.zip2025-08-05 20:48:155798188186,97710
pq500_100spd_plasma_multireplicate_results_refined_2024-05-30_13-46-07.sky.zip2025-08-05 20:48:155798188187,0811
pq500_60spd_plasma_multireplicate_results_refined_2024-05-30_13-45-40.sky.zip2025-08-05 20:48:155798188186,9771
pq500_100spd_plasma_multireplicate_results_2024-05-30_13-45-07.sky.zip2025-08-05 20:48:155798188187,6512
pq500_60spd_plasma_multireplicate_results_2024-05-30_13-44-21.sky.zip2025-08-05 20:48:155798188187,6012
pq500_100spd_neat_multireplicate_results_refined_2024-05-30_13-43-42.sky.zip2025-08-05 20:48:155798188187,6891
pq500_60spd_neat_multireplicate_results_refined_2024-05-30_13-43-05.sky.zip2025-08-05 20:48:155798188187,6011
pq500_100spd_neat_multireplicate_results_2024-05-30_13-42-26.sky.zip2025-08-05 20:48:1557981881811,0881
pq500_60spd_neat_multireplicate_results_2024-05-30_13-41-26.sky.zip2025-08-05 20:48:1557981881811,0881
pq500_60spd_neat_multireplicate_2024-05-30_13-40-53.sky.zip2025-08-05 20:48:1557981881811,0880
Crossfeeding_PlateD.sky.zip2025-07-31 18:21:50501212247
Crossfeeding_PlateC.sky.zip2025-07-31 18:21:50501212247
Crossfeeding_PlateB.sky.zip2025-07-31 18:21:50501212247
Crossfeeding_PlateA.sky.zip2025-07-31 18:21:50501212247
Monoculture_Verruco25.sky.zip2025-07-31 18:21:50501212178
Monoculture_Flavo40.sky.zip2025-07-31 18:21:50501212162
Monoculture_Flavo56.sky.zip2025-07-31 18:21:49501212138
Monoculture_Verruco69.sky.zip2025-07-31 18:21:49501212204
Monoculture_Gamma88.sky.zip2025-07-31 18:21:49501212134
Monoculture_Flavo94.sky.zip2025-07-31 18:21:49501212146
Monoculture_Verruco4.sky.zip2025-07-31 18:21:49501212180
Monoculture_Flavo12.sky.zip2025-07-31 18:21:49501212190
PairwiseCoCultures_Verruco4.sky.zip2025-07-31 18:21:49501212247
PairwiseCoCultures_Verruco69.sky.zip2025-07-31 18:21:49501212247
PairwiseCoCultures_Verruco25.sky.zip2025-07-31 18:21:49501212247
Monoculture_AllStrains.sky.zip2025-07-31 18:21:49501212247
FucoidanDiversity_PlateF.sky.zip2025-07-31 18:21:49501212247
FucoidanDiversity_PlateE.sky.zip2025-07-31 18:21:49803434150
FucoidanDiversity_PlateD.sky.zip2025-07-31 18:21:49501212151
FucoidanDiversity_PlateC.sky.zip2025-07-31 18:21:49803434102
FucoidanDiversity_PlateB.sky.zip2025-07-31 18:21:49501212199
FucoidanDiversity_PlateA.sky.zip2025-07-31 18:21:49803434126
7DegraderCommunity_PlateD.sky.zip2025-07-31 18:21:49501212247
7DegraderCommunity_PlateC.sky.zip2025-07-31 18:21:49501212247
7DegraderCommunity_PlateA.sky.zip2025-07-31 18:21:49501212247
7DegraderCommunity_PlateB.sky.zip2025-07-31 18:21:49501212247
hela_2025-07-21_15-14-01.sky.zip2025-07-23 10:27:101,8379,1829,64986,7361
mouse_2025-07-21_15-13-32.sky.zip2025-07-23 10:27:101,4147,6538,39875,5071
yeast_2025-07-21_15-12-08.sky.zip2025-07-23 10:27:101756016525,8661
DSS Response curve_105plex_5repeats_2025-07-11_01-47-02.sky.zip2025-07-14 10:02:329610522063860
210723-ATI-barley-Pt14_2025-02-24_01-08-00.sky.zip2025-07-02 20:45:211010198733
210423-ATI-barley-Pt13_2025-02-24_01-07-11.sky.zip2025-07-02 20:45:201010194027
210416-ATI-barley-Pt12_2025-02-24_01-06-33.sky.zip2025-07-02 20:45:181010193843
210415-ATI-barley-Pt11_2025-02-24_01-05-41.sky.zip2025-07-02 20:45:161010194029
210302-ATI-barley-Pt10_2025-02-24_01-05-05.sky.zip2025-07-02 20:45:151010194234
210224-ATI-barley-Pt9_2025-02-24_01-04-22.sky.zip2025-07-02 20:45:131010194031
210217-ATI-barley-Pt8_2025-02-24_01-03-46.sky.zip2025-07-02 20:45:121010194029
210210-ATI-barley-Pt7_2025-02-24_01-03-02.sky.zip2025-07-02 20:45:101010194631
210203-ATI-barley-Pt6_2025-02-24_01-02-20.sky.zip2025-07-02 20:45:091010195031
210129-ATI-barley-Pt5_2025-02-24_01-01-22.sky.zip2025-07-02 20:45:071010195831
200731-ATI-barley-Pt4_2025-02-24_01-00-26.sky.zip2025-07-02 20:45:061010198719
200717-ATI-barley-Pt3_2025-02-24_00-58-01.sky.zip2025-07-02 20:45:041010198755
200709-ATI-barley-Pt2-Response_2025-02-24_00-56-48.sky.zip2025-07-02 20:45:01101019957
200709-ATI-barley-Pt2_2025-02-24_00-55-11.sky.zip2025-07-02 20:45:011010199136
200602-ATI-barley-Pt1_2025-02-24_00-25-35.sky.zip2025-07-02 20:44:591010199331
TPAD_CSF1A_Batch1-multiNF-DIANN.sky.zip2025-07-01 17:49:472,85327,12832,575259,53243
TPAD_CSF1A_Batch1-multiNF-DIANN-grouped.sky.zip2025-07-01 17:41:312,67226,43931,769253,11943
TPAD_CSF1B_Batch2-multiNF-DIANN.sky.zip2025-07-01 15:26:132,85327,12832,575259,53241