Barr-Gillespie - Stereocilia Crosslinker Targeted Data

Barr-Gillespie - Stereocilia Crosslinker Targeted Data
Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid
  • Organism: Mus musculus
  • Instrument: Orbitrap Fusion
  • SpikeIn: Yes
Abstract
With their essential role in inner ear function, stereocilia of sensory hair cells demonstrate the importance of cellular actin protrusions. Actin packing in stereocilia is mediated by cross-linkers of the plastin, fascin, and espin families. Although mice lacking espin (ESPN) have no vestibular or auditory function, we found that mice that either lacked plastin 1 (PLS1) or had nonfunctional fascin 2 (FSCN2) had reduced inner ear function, with double-mutant mice most strongly affected. Targeted mass spectrometry indicated that PLS1 was the most abundant cross-linker in vestibular stereocilia and the second most abundant protein overall; ESPN only accounted for ∼15% of the total cross-linkers in bundles. Mouse utricle stereocilia lacking PLS1 were shorter and thinner than wild-type stereocilia. Surprisingly, although wild-type stereocilia had random liquid packing of their actin laments, stereocilia lacking PLS1 had orderly hexagonal packing. Although all three cross-linkers are required for stereocilia structure and function, PLS1 biases actin toward liquid packing, which allows stereocilia to grow to a greater diameter.
Experiment Description
Peptide samples were analyzed with an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific) coupled to a Thermo/Dionex Ultimate 3000 Rapid Separation UPLC system and EasySpray nanosource. Samples were loaded onto an Acclaim PepMap C18, 5 μm particle, 100 μm x 2 cm trap using a 5 μl/min flow rate and then separated on a EasySpray PepMap RSLC, C18, 2 μm particle, 75 μm x 25 cm column at a 300 nl/min flow rate. Solvent A was water and solvent B was acetonitrile, each containing 0.1% (v/v) formic acid. After loading at 2% B for 5 min, peptides were separated using a 55-min gradient from 7.5-30% B, 10-min gradient from 30-90% B, 6-min at 90% B, followed by a 19 min re-equilibration at 2% B. Peptides were analyzed using the targeted MS2 mode of the Xcalibur software in which the doubly or triply charged precursor ion corresponding to each peptide was isolated in the quadrupole, fragmented by HCD, and full m/z 350-1600 scans of fragment ions at 30,000 resolution collected in the Orbitrap. Targeted MS2 parameters included an isolation width of 2 m/z for each precursor of interest, collision energy of 30%, AGC target of 5 x 104, maximum ion injection time of 100 ms, spray voltage of 2400 V, and ion transfer temperature of 275°C. No more than 75 precursors were targeted in each run and no scheduling was used. Three unique peptides for each protein of interest were chosen for isolation based on previous data-dependent discovery data or from online peptide databases (www.peptideatlas.org, www.thegpm.org). Precursor isolation lists for all peptides of interest were exported from the software package Skyline (http://proteome.gs.washington.edu/software/ skyline/) and imported into the Orbitrap control software. Skyline was used to analyze targeted MS/MS data. Chromatographic and spectral data from the RAW files were loaded into Skyline and analyzed to determine fragment ion peaks corresponding to each peptide. RAW files were also processed using Proteome Discoverer (Thermo Scientific) software in order to match MS/MS spectra to an Ensembl spectral database using Sequest HT. Fragment ion peaks that co-eluted with the fragment ion peaks for the corresponding heavy peptide were chosen for analysis. The type and proportion of daughter ions contributing to the peptide peak were required to match that of the heavy peptide peak. In addition, one or more spectra within the light or heavy peptide peak were matched to the correct peptide sequence within the spectral database. If spectra within a specific sample were not identified then a) the retention time of the chosen peak must be within 2 minutes of the retention time of an identified peak for that peptide from another sample and b) the type of daughter ions contributing to the peak must match the identified peptide peak from another sample. Chromatographic peak areas from all detected fragment ions for the light and heavy version of each peptide were integrated and summed, and then the peak area ratio between the light and heavy peptides was calculated. This ratio was multiplied by the amount of spiked heavy peptide to give the fmol amount of each light peptide in the sample. The peptide fmol amounts for each protein of interest were averaged for each sample (and normalized to the average fmol amount for actin within the same sample). The normalized peak areas were then averaged for the four biological replicates of each age/mouse strain to give an average protein intensity measurement for each protein of interest. For the calibration curve samples, a linear regression of the heavy peptide peak area in each of the 4 calibration samples was performed and tested for linearity around the measurement range. Peptides that did not perform linearly (R2 > 0.98) were excluded from analysis. For targeted MS/MS experiments comparing relative protein expression in WT versus Pls1-/- bundles, peptides were measured from three (wild type) or two (Pls1-/-) preparations of 10 ear-equivalents of hair bundles from either genotype. Peptides were generated using in-gel digestion methods, which have been previously described (Krey et al, 2015). Prior to digestion with trypsin, 150 fmol of heavy ACT peptides (see above) were added, and light peptide peak areas were measured for all other proteins of interest. Peptide peak areas for each protein were averaged for each sample and normalized to the average peptide peak area for actin within the same sample. The normalized peak areas were then averaged for the three biological replicates of each genotype to give an average protein intensity measurement for each protein of interest.
Sample Description
For targeted MS/MS, we measured ACT, PLS1, FSCN2, ESPN and ESPN-1 peptides from four preparations of 10 ear-equivalents of hair bundles isolated from P21-25 C57BL/6 mice and from four preparations from 2 different ages of CD-1 mice (P4-P6, P21-P23), each of 13-14 ear-equivalents of hair bundles. In-solution tryptic digests of the samples were prepared using an enhanced filter-aided sample preparation (eFASP) method (Erde et al, 2014). Proteins were digested in the filter unit in 100 µl digestion buffer with 200 ng sequencing-grade modified trypsin (Promega) at 37°C for 12-16 hours. Three quantified synthetic stable-isotope labeled peptides (SpikeTides-TQL) corresponding to each mouse protein sequence (ACT: EITALAPSTMK, GYSFTTTAER, AGFAGDDAPR, PLS1: IYALPDDLVEVKPK, MINLSEPDTIDER, VAFVNWINK, FSCN2: FFGGIEDR, FLVLPQPDGR, YLAPVGPAGTLK, ESPN: LAPWQR, LASLPAWR, TLGYDEAK, ESPN1: DNSGATVLHLAAR, YLVEEVALPAVSR, YLVQECSADPHLR) were obtained from JPT Peptide Technologies (Berlin, Germany) and used as internal standards; any cysteine residues were substituted by carbamoylmethylated cysteines during synthesis. The following amounts of each peptide were added along with the trypsin solution prior to digestion of each sample: ACT peptides, 500 fmol; PLS1 peptides, 50 fmol; FSCN2 peptides, 50 fmol; ESPN peptides 10 fmol; and ESPN1 peptides, 1 fmol. Calibration curves were run for all peptides by adding four dilutions of each peptide (centered around the amount spiked into the sample) to four mouse utricular lysate samples (0.5 ear equivalents) prepared in the same way as the bundle samples. Peptides were isolated by centrifugation and were extracted with ethyl acetate to remove remaining deoxycholic acid [31]. Heavy and endogenous forms of each peptide were monitored by targeted MS/MS. For targeted MS/MS experiments comparing relative protein expression in WT versus Pls1-/- bundles, peptides were measured from three (wild type) or two (Pls1-/-) preparations of 10 ear-equivalents of hair bundles from either genotype. Peptides were generated using in-gel digestion methods, which have been previously described (Krey et al, 2015). Prior to digestion with trypsin, 150 fmol of heavy ACT peptides (see above) were added, and light peptide peak areas were measured for all other proteins of interest.
Created on 10/31/16, 4:26 PM
Clustergrammer Heatmap
 
Download
NV0001_Mouse-Skin_mProphet_Panorama_2024-03-09_19-20-18.sky.zip2024-03-10 20:30:291,6595,7905,79028,90434
XW0008_Cas9Myc_DIAassayLIB_OmBcells_17Nov2023_2024-02-24_08-51-18.sky.zip2024-02-24 12:56:485,20383,67483,675605,04024
XW0009_DIAassayLIB_OmBcells_17Nov2023_2024-02-23_18-35-50.sky.zip2024-02-23 22:06:575,20383,64583,647604,72019
AutoQC-lumos-SysS-MouAD-PFC-C2-B5-B7.sky.zip2024-02-20 07:53:561889414
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B07.sky.zip2024-02-18 11:31:099,778127,624127,624966,34712
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B06.sky.zip2024-02-18 10:45:259,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B05.sky.zip2024-02-18 09:51:569,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B04.sky.zip2024-02-18 01:14:219,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B03.sky.zip2024-02-18 00:22:039,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B02.sky.zip2024-02-17 23:29:529,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B01.sky.zip2024-02-17 18:20:009,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B28.sky.zip2024-02-17 17:30:039,778127,624127,624966,3476
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B27.sky.zip2024-02-17 16:57:559,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B26.sky.zip2024-02-17 15:06:069,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B25.sky.zip2024-02-17 14:11:069,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B24.sky.zip2024-02-17 13:17:049,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B23.sky.zip2024-02-17 10:45:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B22.sky.zip2024-02-17 09:52:589,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B21.sky.zip2024-02-17 09:01:129,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B20.sky.zip2024-02-17 01:24:329,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B19.sky.zip2024-02-17 00:31:539,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B18.sky.zip2024-02-16 23:42:139,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B17.sky.zip2024-02-16 21:59:109,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B16.sky.zip2024-02-16 21:08:449,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B15.sky.zip2024-02-16 19:45:379,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B14.sky.zip2024-02-16 18:50:509,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B13.sky.zip2024-02-16 17:05:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B12.sky.zip2024-02-16 16:13:309,778127,624127,624966,34716
XW0008-Myc248_DIAassayLIB_OmBcells_17Nov2023_2024-02-16_10-02-13.sky.zip2024-02-16 15:02:065,20383,67483,675605,04024
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B11.sky.zip2024-02-16 11:03:589,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B10.sky.zip2024-02-16 10:07:519,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B09.sky.zip2024-02-16 09:14:539,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B08.sky.zip2024-02-16 08:20:059,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B07.sky.zip2024-02-16 01:08:409,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B06.sky.zip2024-02-16 00:17:379,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B05.sky.zip2024-02-15 23:29:389,778127,624127,624966,34716
XW0008_nanos3_DIAassayLIB_OmBcells_17Nov2023_2024-02-15_17-02-46.sky.zip2024-02-15 21:13:165,20383,67483,675605,04024
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B04.sky.zip2024-02-15 16:37:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B03.sky.zip2024-02-15 14:42:299,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B02.sky.zip2024-02-15 13:44:359,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B01.sky.zip2024-02-15 12:45:409,778127,624127,624966,34716
AutoQC-lumos-PCs-MouAD-PFC-C2-B5-B7.sky.zip2024-02-14 16:42:502141417344
AutoQC-lumos-PCs-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:42:332141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:42:152141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:42:002141417380
AutoQC-lumos-PCs-MouAD-PFC-C1-B25-B28.sky.zip2024-02-14 16:41:372141417354
AutoQC-lumos-PCs-MouAD-PFC-C1-B21-B24.sky.zip2024-02-14 16:41:002141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 16:40:442141417365
AutoQC-lumos-PCs-MouAD-PFC-C1-B13-B16.sky.zip2024-02-14 16:40:282141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 16:40:082141417347
AutoQC-lumos-SysS-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:10:161889417
AutoQC-lumos-SysS-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:06:251889416
AutoQC-lumos-SysS-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:02:231889422
AutoQC-lumos-SysS-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 15:59:501889418
AutoQC-lumos-SysS-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 14:48:381889410
ZipChip_HR_Metabolomics_2024Protocol_2024-02-05_17-24-05.sky.zip2024-02-05 14:24:28100821594
22AminoAcids_Fully13CLabeled_2024-01-29_14-30-52.sky.zip2024-01-29 11:32:1410444936
RBD_M_Glyco_2024-01-25_15-29-41.sky.zip2024-01-26 17:23:2672923972,3829
20240104_Neg_FMT_MCBAs_isoRemove_Cleaned_Final_2024-01-25_21-40-19.sky.zip2024-01-26 16:43:471010030056
20231220_Neg_FMT_BA_Full_reduce_Res50_High_final_2024-01-04_15-44-59.sky.zip2024-01-26 16:43:47405112176
P179_UNCSet1_ACE_v0p3_2024-01-24_22-42-18.sky.zip2024-01-24 19:51:4423034963724
P179_UNCSet2_ACE_v0p3_2024-01-24_22-37-25.sky.zip2024-01-24 19:40:1117021336726
New_iRBD2024-01-15 23:30:5233474794292
Paired_CSF_Plasma_Serum2024-01-15 23:30:523347479460
Initial_Targeted_Proteomics2024-01-15 23:30:5233474794441
TPAD_VL_CSF_PRTC_APOA1_2024-01-07_23-01-46.sky.zip2024-01-07 23:08:493464642412
TPAD-CSF-SP3_1-5.sky.zip2024-01-05 06:03:432,90823,74323,743189,895396
173_peptides_iRTs_chromatogram_library_2023-12-22_00-47-19.sky.zip2023-12-22 01:06:36311833561,0822
Figure_8B_Freiburg_ALG1-CDG-Patients_Comparison_2023-12-22_02-34-55.sky.zip2023-12-22 01:06:2022691284006
Figures_4_5_6_7_8A_Heidelberg_CDG-Patients_2023-12-22_02-32-43.sky.zip2023-12-22 01:06:20206712439014
Figure_S5_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-59-41.sky.zip2023-12-22 01:06:2021112146
Figure_9_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-53-52.sky.zip2023-12-22 01:06:2021418404
Figures_3_and_S3_HEK_293T_Fibroblasts_HeLa_2023-12-22_01-03-03.sky.zip2023-12-22 01:06:2023701303989
20210301 Calibration Dev_DilutionOil_2023-12-11_10-57-35.sky.zip2023-12-20 00:34:263482654
20210607 Calibration Curve_DilutionDigest_2023-12-11_10-50-40.sky.zip2023-12-20 00:34:2634824108
20210212 Low range exploration 140K-fragmod_Pub_2023-12-08_16-04-13.sky.zip2023-12-20 00:34:263482456
HeatedOilSpike-LowTemp_HighTemp_Combined_Final_2022-05-26_12-00-47.sky.zip2023-12-20 00:34:26591548204
20200715_PeptideSpecificity_SignalRatio_2022-05-25_16-33-02.sky.zip2023-12-20 00:34:2611202212044
20200622_PeptideSpecificityTest_2022-05-25_16-30-20.sky.zip2023-12-20 00:34:2614252713545
20191112_Diff-TempConc_Oil-Spike_24pep_2022-05-25_14-24-35.sky.zip2023-12-20 00:34:2611242715040
20191007_HeatedOilSpike_Extraction_method_24pep_2022-05-25_14-16-21.sky.zip2023-12-20 00:34:2611242715032
20190904_Organic_Aqueous_Extraction_Oil_Spike_24pep_2022-05-25_14-12-26.sky.zip2023-12-20 00:34:2611242715636
September 21 Import V1 (Samples with IS) w Cal Curve_Blanks Deleted_2023-12-01_11-40-59.sky.zip2023-12-02 23:51:3320262687
September 21 Kaylie New Molecule Import v1 (Filtered)_2023-12-01_11-40-01.sky.zip2023-12-02 23:51:3310161698
September 21 Import V1 all samples (Neg mode only)_2023-12-01_11-35-34.sky.zip2023-12-02 23:51:338014514598
THP1_IFN_PRM_Skyline_2023-11-14_14-22-42.sky.zip2023-11-16 13:26:09711771771,5148
CCS_library_v2.sky.zip2023-11-15 14:36:301061,86361,8630
IdentExpression_2023-09-25_14-39-47.sky.zip2023-10-02 20:45:1381581941,16419
2DGel_II_2023-09-25_14-37-39.sky.zip2023-10-02 20:45:13897408805,28034
2DGel_I_2023-09-25_14-36-13.sky.zip2023-10-02 20:45:13252142321,39232
InGelDigest_Der_p_SEA_II_2023-09-18_10-01-52.sky.zip2023-09-21 11:03:445004,0584,42026,52051
InGelDigest_Der_p_SEA_I_2023-09-15_16-14-11.sky.zip2023-09-21 11:03:443272,3822,52115,12652
FASP_Der_p_SEA_2023-09-15_14-24-26.sky.zip2023-09-21 11:03:445504,2964,77128,6261
230504_Myllys_231247ff_2023-09-20_13-22-59.sky.zip2023-09-21 10:31:2410434398
230512MyllysUrea_231247ff_2023-09-21_15-27-13.sky.zip2023-09-21 10:31:24102292
230511Myllys231247ff_AA_Crea_2023-09-20_13-36-24.sky.zip2023-09-21 10:31:242044166126
AutoQC-lumos-SysS-MouAD-C2-B8-10.sky.zip2023-09-17 11:22:321889414
AutoQC-lumos-SysS-MouAD-C2-B5-B7.sky.zip2023-09-17 11:22:301889415
AutoQC-lumos-SysS-MouAD-C2-B1-B4.sky.zip2023-09-17 11:22:281889419
AutoQC-lumos-SysS-MouAD-C1-B9-B12.sky.zip2023-09-17 11:22:261889413