Biggin - Tagless_analysis_of_protein-protein_interactions_in_Desulfovibrio_vulgaris

Biggin - Tagless_analysis_of_protein-protein_interactions_in_Desulfovibrio_vulgaris
A quantitative tagless co-purification method to validate and identify protein-protein interactions
  • Organism: Desulfovibrio vulgaris str. Hildenborough
  • Instrument: 4800 Plus MALDI TOF/TOF,5800 TOF/TOF
  • SpikeIn: No
Abstract
A quantitative tagless method that employs iTRAQ™ mass spectrometry (Ross et al., 2004. Mol. Cell. Proteomics 3:1154-69) to measure the co-purification of endogenous proteins through orthogonal chromatographic fractionation steps (Dong et al.,2008. J. Proteome Res. 7:1836-49) was employed to characterize protein-protein interactions (PPIs) in D.vulgaris (DvH). 5,273 fractions from a four step fractionation of a D. vulgaris protein extract were assayed, leading to the detection of 1,242 proteins. Shotgun LC MALDI utilized AB Sciex 4800 and 5800 TOF/TOF mass spectrometers. ProteinPilot™ software was used for protein identification and relative quantitation. Pearson cross-correlation values (CC values) were computed for each iTRAQ multiplex for both the SEC and separately the HIC dimensions. Interologs of protein pairs in the established benchmark protein-protein interaction sets are much more likely to have high maximum CC values in both the HIC and SEC dimensions than seen for all protein pairs or for negative protein pairs. We identified 200 high confidence D. vulgaris PPIs based on tagless co-purification and co-localization in the genome, 140 of which are not part of our D. vulgaris affinity purification-MS interactome (Shatsky et al., submitted). The library was generated using all data acquired in the course of the project. All the highest ranking DvH proteins identified on the basis of at least one peptide that was matched with a confidence above 0.95 are shown, including proteins that were further filtered out in the process of protein-protein interactions analysis, as described in the paper. Competitor proteins based on the evidence used for the higher ranking counterparts are not shown.
Experiment Description
Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) using large scale screens is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs and are much more enriched in protein pairs annotated with similar functions or validated by other interaction data than the pairs from nine other bacterial AP-MS or yeast two hybrid (Y2H) interactomes. To more thoroughly determine the accuracy of protein interactomes and identify PPIs de novo, here we present a quantitative tagless method that employs iTRAQ™ mass spectrometry to measure the co-purification of endogenous proteins through orthogonal chromatographic fractionation steps. 5,273 fractions from a four step fractionation of a D. vulgaris protein extract were assayed, leading to the detection of 1,242 proteins. Protein partners in our D. vulgaris and E. coli AP-MS interactomes show highly correlated co-purification as frequently as pairs belonging to three benchmark datasets of well characterized PPIs. In contrast, the protein pairs from the nine other Y2H or AP-MS screens co-purify 2 – 20 fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless co-purification and co-localization in the genome, 140 of which are not part of our D. vulgaris AP-MS interactome. These novel PPIs include examples validated by other experiments and also identify additional members of complexes first detected by AP-MS. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR. 10 g of soluble protein was extracted from a crude cell lysate of 400 L of wild type D. vulgaris cell culture (D. vulgaris Hildenborough wild-type ATCC29579). This crude extract was separated by ammonium sulfate precipitation, followed by three successive highly parallel chromatographic steps: MonoQ anion exchange Chromatography (Q-IEC); Hydrophobic Interaction Chromatography (HIC); and Size Exclusion Chromatography (SEC). To avoid redundantly analyzing similar fractions, every second or third fraction from each proceeding separation step was used as input to the subsequent step. Each fraction from the SEC dimension was digested with trypsin and the resulting peptides labeled with iTRAQ™ reagents to quantitate relative abundances of each protein between fractions. Samples were combined to form iTRAQ multiplexes that contain between 3 - 8 SEC fractions for simultaneous mass spectrometry. Two patterns of iTRAQ labeling were used. In one, successive fractions from the same SEC column were labeled to determine the elution profiles of each protein across that column. In the second, the equivalent fractions from multiple SEC columns (i.e. fractions with the same retention time, same sized proteins) were labeled to allow the elution of proteins across the HIC column to be inferred. A total of 1,472 distinct iTRAQ-labeled multiplexes were obtained and assayed by shotgun MALDI LC MS. Pearson cross-correlation values (CC values) were computed for each iTRAQ multiplex for both the SEC and separately the HIC dimensions. Each co-occurring protein pair was assigned the maximum CC value for that pair for the SEC and, separately, for the HIC dimension. We established logistic regression, machine learning to combine up to eight features and rank co-occurring pairs by the confidence that they are bona fide PPIs. Five features derive only from the tagless mass spectrometry data and include the CC values in the HIC and SEC dimensions as well as the frequency with which protein pairs co-occur in the same fractions. The remaining three features are based on genome location and capture the tendency for two genes to be present in the same operon across a range of species, using information from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The logistic regression was trained on a gold standard positive set of likely PPIs and a gold standard negative set of non-interacting protein pairs. All eight features show strong enrichment of pairs from the gold positive set over pairs from the gold negative set, indicating that each feature can partially distinguish true positives from false positive PPIs. Cross-validation ensured that gold standard complexes used for training were excluded from the validation step.
Sample Description
Tryptic digestion of SEC fractionated proteins was performed on 96-well PVDF membrane plates (Multiscreen-IP 0.45 µm, Millipore, MAIPN4510) using protocol based on a method originally introduced for protein N-deglycosylation (Papac et al.,1998. Glycobiology 8:445-54). The tryptic peptides were eluted from the membranes into a 96-well collection plate using the vacuum. Two formats of iTRAQ derivatization procedures were utilized: manufacturer’s protocol and own miniaturized protocol that employed 1/8th of the reagent. Thus generated samples were combined to form multiplexes comprising up to 4 or 8 SEC fractions for simultaneous MS analysis when using iTRAQ 4- and 8-plex reagents, respectively. To allow protein elution profiles to be quantitated across all selected fractions from a single column, one “joint” fraction was labeled twice with a common iTRAQ label (e.g. 113) that was used in two otherwise non-overlapping multiplexes. iTRAQ-labeled peptide mixtures were separated by reversed phase HPLC using an Ultimate 3000 dual column HPLC system (Dionex, Sunnyvale, CA) that was set up in a parallel configuration and equipped with a pair of reversed phase LC Packings/Dionex Monolithic PepSwift-DVB trap and analytical columns (200 µm x 1 cm and 200 µm x 5 cm, respectively). The LC system was operated in a swinging fashion to allow for a simultaneous peptide fractionation and column equilibration using an active and a resting column, respectively. Each sample was fractionated into 129 fractions over an 8-min collection time, with a frequency of 3.66 seconds per spot, mixed with MALDI matrix [5 mg/mL α-cyano-4-hydroxycinnamic acid (CHCA) in 80% acetonitrile / 0.05% TFA], containing 10 mM ammonium phosphate and 20 fmol/μl of [Glu1]-fibrinopeptide B (Glu-Fib) as internal calibration standard and spotted onto a blank MALDI plate (AB Sciex) using a.SunChrom Fraction Collector/Spotter (Sunchrom, Friedrichsdorf, Germany). The majority of analyses were performed using a 4800 MALDI TOF/TOF mass spectrometer (AB Sciex) operated using 4000 Series Explorer software (version 3.5.28193; build 1011, AB Sciex). External calibration based on Plate Model software (AB Sciex) was applied. Internal one-point calibration using the monoisotopic mass of the spiked Glu-Fib (m/z 1570.677) as a reference was performed for all spectra that met the preset internal standard data quality criteria (minimum accuracy of 0.2 Da and signal-to-noise (S/N) of 50). The vendor’s supplied “stop conditions” software was employed to automatically stop MS/MS data acquisition once all the specified spectrum quality criteria were reached. Small portion of the data was acquired using AB Sciex 5800 mass spectrometer while employing an iterative MS/MS acquisition routine (Liu et al., 2011. Anal. Chem. 83:6286-93). The AB Sciex search engine ProteinPilot™ v. 3.0 and 4.0 with the Paragon™ Method algorithm (Shilov et all, 2007. Mol. Cell. Proteomics 6:1638-55) was employed for protein identification and calculation of relative protein abundances. The ProteinPilot “Add TOF/TOF Data” module was used to extract raw MS data stored in an Oracle database for direct submission to a search engine. The majority of analyses (~88%) utilized a custom database (a total of 51283 entries) that included 6-frame translated products of the D. vulgaris genome and common contaminants. The presence of at least one peptide matched with a confidence of 95% was used as a threshold for considering a protein for further analysis. Competitor protein identifications based on same evidence (spectra) explained by alternate hypotheses of the same confidence were included. After subsequent filtering described below, however, all proteins present in pairs that co-occur with CC values >0.85 or are part the 200 high confidence PPIs were detected by at least one peptide with a confidence of 99% and were ranked as primary identifications. Default settings of the search engine algorithm were used to calculate average relative abundances of each polypeptide. Neither bias correction nor background subtraction options were employed.
Created on 12/18/15, 10:51 AM
Clustergrammer Heatmap
 
Download
figure7_DIA_samples.sky.zip2024-04-09 15:12:492212125133
figure6_PRM_system_suitability_2024-02-05_19-48-55.sky.zip2024-04-09 15:12:422171718948
figure6_DIA_samples_2024-02-06_13-03-26.sky.zip2024-04-09 15:12:2722121251157
figure5_DIA_samples.sky.zip2024-04-09 15:12:182212125115
figure5_PRM_system_suitability.sky.zip2024-04-09 15:12:18217171896
figure4_PRM_system_suitability.sky.zip2024-04-09 15:12:092171718914
figure4_DIA_samples.sky.zip2024-04-09 15:12:092212125132
figure3_PRM_system_suitability.sky.zip2024-04-09 15:12:042171718937
figure2_PRM_system_suitability_2024-02-02_13-59-23.sky.zip2024-04-09 15:11:542171718985
NV0001_Mouse-Skin_mProphet_Panorama_2024-03-09_19-20-18.sky.zip2024-03-10 20:30:291,6595,7905,79028,90434
XW0008_Cas9Myc_DIAassayLIB_OmBcells_17Nov2023_2024-02-24_08-51-18.sky.zip2024-02-24 12:56:485,20383,67483,675605,04024
XW0009_DIAassayLIB_OmBcells_17Nov2023_2024-02-23_18-35-50.sky.zip2024-02-23 22:06:575,20383,64583,647604,72019
AutoQC-lumos-SysS-MouAD-PFC-C2-B5-B7.sky.zip2024-02-20 07:53:561889414
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B07.sky.zip2024-02-18 11:31:099,778127,624127,624966,34712
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B06.sky.zip2024-02-18 10:45:259,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B05.sky.zip2024-02-18 09:51:569,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B04.sky.zip2024-02-18 01:14:219,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B03.sky.zip2024-02-18 00:22:039,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B02.sky.zip2024-02-17 23:29:529,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B01.sky.zip2024-02-17 18:20:009,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B28.sky.zip2024-02-17 17:30:039,778127,624127,624966,3476
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B27.sky.zip2024-02-17 16:57:559,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B26.sky.zip2024-02-17 15:06:069,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B25.sky.zip2024-02-17 14:11:069,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B24.sky.zip2024-02-17 13:17:049,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B23.sky.zip2024-02-17 10:45:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B22.sky.zip2024-02-17 09:52:589,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B21.sky.zip2024-02-17 09:01:129,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B20.sky.zip2024-02-17 01:24:329,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B19.sky.zip2024-02-17 00:31:539,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B18.sky.zip2024-02-16 23:42:139,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B17.sky.zip2024-02-16 21:59:109,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B16.sky.zip2024-02-16 21:08:449,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B15.sky.zip2024-02-16 19:45:379,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B14.sky.zip2024-02-16 18:50:509,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B13.sky.zip2024-02-16 17:05:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B12.sky.zip2024-02-16 16:13:309,778127,624127,624966,34716
XW0008-Myc248_DIAassayLIB_OmBcells_17Nov2023_2024-02-16_10-02-13.sky.zip2024-02-16 15:02:065,20383,67483,675605,04024
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B11.sky.zip2024-02-16 11:03:589,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B10.sky.zip2024-02-16 10:07:519,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B09.sky.zip2024-02-16 09:14:539,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B08.sky.zip2024-02-16 08:20:059,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B07.sky.zip2024-02-16 01:08:409,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B06.sky.zip2024-02-16 00:17:379,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B05.sky.zip2024-02-15 23:29:389,778127,624127,624966,34716
XW0008_nanos3_DIAassayLIB_OmBcells_17Nov2023_2024-02-15_17-02-46.sky.zip2024-02-15 21:13:165,20383,67483,675605,04024
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B04.sky.zip2024-02-15 16:37:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B03.sky.zip2024-02-15 14:42:299,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B02.sky.zip2024-02-15 13:44:359,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B01.sky.zip2024-02-15 12:45:409,778127,624127,624966,34716
AutoQC-lumos-PCs-MouAD-PFC-C2-B5-B7.sky.zip2024-02-14 16:42:502141417344
AutoQC-lumos-PCs-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:42:332141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:42:152141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:42:002141417380
AutoQC-lumos-PCs-MouAD-PFC-C1-B25-B28.sky.zip2024-02-14 16:41:372141417354
AutoQC-lumos-PCs-MouAD-PFC-C1-B21-B24.sky.zip2024-02-14 16:41:002141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 16:40:442141417365
AutoQC-lumos-PCs-MouAD-PFC-C1-B13-B16.sky.zip2024-02-14 16:40:282141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 16:40:082141417347
AutoQC-lumos-SysS-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:10:161889417
AutoQC-lumos-SysS-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:06:251889416
AutoQC-lumos-SysS-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:02:231889422
AutoQC-lumos-SysS-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 15:59:501889418
AutoQC-lumos-SysS-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 14:48:381889410
ZipChip_HR_Metabolomics_2024Protocol_2024-02-05_17-24-05.sky.zip2024-02-05 14:24:28100821594
22AminoAcids_Fully13CLabeled_2024-01-29_14-30-52.sky.zip2024-01-29 11:32:1410444936
RBD_M_Glyco_2024-01-25_15-29-41.sky.zip2024-01-26 17:23:2672923972,3829
20240104_Neg_FMT_MCBAs_isoRemove_Cleaned_Final_2024-01-25_21-40-19.sky.zip2024-01-26 16:43:471010030056
20231220_Neg_FMT_BA_Full_reduce_Res50_High_final_2024-01-04_15-44-59.sky.zip2024-01-26 16:43:47405112176
P179_UNCSet1_ACE_v0p3_2024-01-24_22-42-18.sky.zip2024-01-24 19:51:4423034963724
P179_UNCSet2_ACE_v0p3_2024-01-24_22-37-25.sky.zip2024-01-24 19:40:1117021336726
New_iRBD2024-01-15 23:30:5233474794292
Paired_CSF_Plasma_Serum2024-01-15 23:30:523347479460
Initial_Targeted_Proteomics2024-01-15 23:30:5233474794441
TPAD_VL_CSF_PRTC_APOA1_2024-01-07_23-01-46.sky.zip2024-01-07 23:08:493464642412
TPAD-CSF-SP3_1-5.sky.zip2024-01-05 06:03:432,90823,74323,743189,895396
173_peptides_iRTs_chromatogram_library_2023-12-22_00-47-19.sky.zip2023-12-22 01:06:36311833561,0822
Figure_8B_Freiburg_ALG1-CDG-Patients_Comparison_2023-12-22_02-34-55.sky.zip2023-12-22 01:06:2022691284006
Figures_4_5_6_7_8A_Heidelberg_CDG-Patients_2023-12-22_02-32-43.sky.zip2023-12-22 01:06:20206712439014
Figure_S5_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-59-41.sky.zip2023-12-22 01:06:2021112146
Figure_9_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-53-52.sky.zip2023-12-22 01:06:2021418404
Figures_3_and_S3_HEK_293T_Fibroblasts_HeLa_2023-12-22_01-03-03.sky.zip2023-12-22 01:06:2023701303989
20210301 Calibration Dev_DilutionOil_2023-12-11_10-57-35.sky.zip2023-12-20 00:34:263482654
20210607 Calibration Curve_DilutionDigest_2023-12-11_10-50-40.sky.zip2023-12-20 00:34:2634824108
20210212 Low range exploration 140K-fragmod_Pub_2023-12-08_16-04-13.sky.zip2023-12-20 00:34:263482456
HeatedOilSpike-LowTemp_HighTemp_Combined_Final_2022-05-26_12-00-47.sky.zip2023-12-20 00:34:26591548204
20200715_PeptideSpecificity_SignalRatio_2022-05-25_16-33-02.sky.zip2023-12-20 00:34:2611202212044
20200622_PeptideSpecificityTest_2022-05-25_16-30-20.sky.zip2023-12-20 00:34:2614252713545
20191112_Diff-TempConc_Oil-Spike_24pep_2022-05-25_14-24-35.sky.zip2023-12-20 00:34:2611242715040
20191007_HeatedOilSpike_Extraction_method_24pep_2022-05-25_14-16-21.sky.zip2023-12-20 00:34:2611242715032
20190904_Organic_Aqueous_Extraction_Oil_Spike_24pep_2022-05-25_14-12-26.sky.zip2023-12-20 00:34:2611242715636
September 21 Import V1 (Samples with IS) w Cal Curve_Blanks Deleted_2023-12-01_11-40-59.sky.zip2023-12-02 23:51:3320262687
September 21 Kaylie New Molecule Import v1 (Filtered)_2023-12-01_11-40-01.sky.zip2023-12-02 23:51:3310161698
September 21 Import V1 all samples (Neg mode only)_2023-12-01_11-35-34.sky.zip2023-12-02 23:51:338014514598
THP1_IFN_PRM_Skyline_2023-11-14_14-22-42.sky.zip2023-11-16 13:26:09711771771,5148
CCS_library_v2.sky.zip2023-11-15 14:36:301061,86361,8630
EMCV_kinome_2023-10-31_04-42-06.sky.zip2023-11-01 19:01:26567814547846
CVB3_kinome_2023-10-31_04-41-10.sky.zip2023-11-01 19:01:26537413745046
SARSCov2_PBS_2023-08-10_17-13-28.sky.zip2023-10-19 19:19:3311241
SARSCov2_AmBIC_2023-08-10_17-12-11.sky.zip2023-10-19 19:19:3311241