#### Library of Integrated Network-based Cellular Signatures



# Strange and Wonderful Observations from the World of Proteomic Profiling

September 19, 2016

Jacob D. Jaffe — Broad Institute, PI
Li-Huei Tsai — MIT, co-investigator
Michael MacCoss — U. of Washington, co-investigator

### **Outline**



- Profiling and Infrastructure Progress
- Assessment of dataset quality
- Vignettes
- Extension into neuronal models
- Unlocking deeper signaling information through next-gen MS
- Outreach Activities

### **PCCSE Center Scientific Overview**



## **Extensive progress building the library**

- 3400+ biological samples generated spanning:
  - 90 compounds in triplicate spanning many MoA
  - Beginning CRISPR/Cas9-based gene disruptions
  - 6 cellular models (breast, lung, skin, prostate, and pancreatic cancers; neuronal precursors)
  - 2 assay platforms (+L1000 in collaboration)
- Key infrastructure:
  - Public data repository with built-in signature visualization (bit.ly/PCCSEData)
  - Documented workflows; automated analytical pipeline for reproducibility





Proteomics and Biomarker Discovery

## **Turning signatures into connections:** Signatures

#### **Signatures** are groups of related profiles

#### Compounds



| Gene    | Site  |
|---------|-------|
| PDPK1   | S241  |
| IQGAP3  | S1424 |
| ULK1    | S556  |
| NUP214  | S1012 |
| RPS6    | S235  |
| FAM129B | S692  |
| AHNAK   | S3426 |
| ZC3HC1  | S321  |
| MAP4    | S2218 |
| C22orf9 | S304  |
| RPS6KA1 | S230  |
| SH3KBP1 | S230  |
| FOSL2   | S200  |
| FOSL2   | S200  |
| LARP5   | S601  |
| BAT2    | S1219 |
| LIMA1   | S362  |
| OCIAD1  | S108  |
|         |       |
|         |       |

## **Turning signatures into connections:** Similarities

**Similarities** are correlations computed from signatures



Replicate consistency describes similarity on the lower diagonal

## Consistency rank via similarity assesses dataset quality



- Average AUC: GCP ~92%, P100 ~96%
- 66% of compounds have signal in GCP (within top 3 recall rank)
- 83% of compounds have signal in P100 (within top 3 recall rank)

## Turning signatures into connections: Connectivity

**Similarities** are correlations computed from signatures



**Connectivity** comes from analysis of the similarity matrix

## **Turning signatures into connections**

**Connectivity queries** put correlations in context



The **connectivity score** is a signed value of the KS-test

## Vignette 1: What's a BRAF inhibitor to do when its target is not a dependency?



- A375 has mutant BRAF (V600E) and is dependent on it
- Vemurafenib is the top ranked connection ALL cancer lines
- NPCs do not seem to respond at all
- So what does it do in the other cell lines?

## Vignette 1: What's a BRAF inhibitor to do when its target is not a dependency?



Does vemurafenib inhibit the **Notch** pathway in **PC3**?

## Vignette 1: What's a BRAF inhibitor to do when its target is not a dependency?



- Connections to **BRD inhibitors** seem enriched in **MCF7**?
- Many lines seem to have some residual effects in Jak/Stat, which is ~upstream of RAF

## **Vignette 2: The strange case of Pazopanib in NPCs**



- Pazopanib is the top ranked connection all lines
- SMER3, niclosamide, and dinaciclib are strong (+) connections in cancer lines
- However, these 3 are strong (-) connections in NPCs.

## **Vignette 2: The strange case of Pazopanib in NPCs**

#### **Connectivity of Pazopanib Cancer Connections in NPCs**



#### (+) and (-) Connectivity of Pazopanib in NPCs



- But all of these things are strongly connected in NPCs, just not to pazopanib
- Perhaps Pazopanib has **Jak2** selectivity in NPCs? Or NPCs favor Jak2 signaling?

## **Vignette 3: Chromatin connections of MEK inhibitors?**



Again, NPCs show interesting biology with differential connections of PD0325901 and Selumetinib

Connections to cell cycle drugs suggest arrest, neutrality, and pro-proliferation

## **Preview of the coming year**

- More analysis of data set and apps for interaction with the data
  - See poster from Lev Litichevsky and Ryan Peckner
- CRISPR/Cas9-based gene disruptions in multiple cell types
  - Already in progress
- Profiling of drug effects in ESC-derived neurons
  - The ESC system has inducible Cas9 which will allow for further manipulations
  - See poster from Jennie Young, Joel Blanchard, and Fatema Abdurrob
- Deeper mining of comprehensive MS data
  - See poster from Jarrett Egertson

## **Creating neurons for high-content proteomics assays**

Passive differentiation via growth factor withdrawal (GFW)



## **Creating neurons for high-content proteomics assays**

Passive differentiation via growth factor withdrawal (GFW)



## **Next-gen comprehensive MS will extend the P100**

- P100 data have been collected using a "DIA" MS method
  - Pioneered by MacCoss Lab
- DIA has the potential to identify and quantify 1000s of phosphosites in our data
- A key challenge is developing the algorithms to "unlock" these data

## Two innovative tools for comprehensive MS analysis

Typical Workflow

Spectrum
Library

Compute
Match
Features

Wide
Window
DIA File

Machine
Learning
Classifier

- Tool 1: Pecan
  - Uses only peptide sequences
  - No spectral or retention time information



- Tool 2: EncyclopeDIA
  - Uses peptide sequences
  - Spectrum or Chromatogram libraries
  - Positional isomers



## Pioneering methods meeting or exceeding goals



### **PCCSE Outreach and Intra-LINCS activities**

- Signatures of cardiovascular hypertension induced by chemotherapeutic drugs
  - Molecular Cardiology Research Institute, Tufts Medical Center
  - See poster from Srila Gopal
- Signatures of neuropsychiatric phenotypes and their responses to drugs in patient-isolated iPS-derived NPCs and neurons
  - Massachusetts General Hospital
- Mapping of P100 probe-sets onto known pathway networks
  - Georgetown University and University of Delaware
  - Together with DCIC through LINCS EDSR
- Substrates to promote neuronal fates and phenotypes
  - Intra-LINCS with OHSU MEP LINCS Center

## **PCCSE Overall Summary**

- Great progress has been made in the first two years in establishing our center
  - Vignettes illustrate the promise of our data
- Our neurobiology models are progressing nicely and we are excited to extend these further
- Next-Gen MS holds great promise for increasing the impact of our work
- We are poised to use our data "as is" for comprehensive connectivity analysis, but also as a springboard for comparison with new data to be made via:
  - Our continued efforts
  - Our outreach and collaboration efforts
  - Data made by third parties

## **Acknowledgments**



#### Broad Institute – Jaffe Lab and Proteomics Platform

Amanda Creech

Shawn Egri

Adam Officer

Malvina Papanastasiou

Ryan Peckner

Sebastian Vaca

Janice Williamson

Steve Carr

#### MIT – Tsai Lab & Stem Cell Core

Fatema Abdurrob

Tak Ko

Joel Blanchard

Jennie Young

#### Key Collaboration Partners

Iris Jaffe — Tufts Medical Center Srila Gopal — Tufts Medical Center Stephen Haggarty — Mass General Hospital University of Washington - MacCoss Lab

Jarrett Egertson

Brendan MacClean

**Brian Searle** 

Vagisha Sharma

Sonia Ting

#### Broad Institute - LINCS Common Core

Desiree Davison

David Lahr

Daniel Lam

Lev Litichevskiy

Xiaodong Lu

Ted Natoli

Mukta Bagul

**Aravind Subramanian** 

Todd Golub

Proteomics and Biomarker Discover