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Outline

= Profiling and Infrastructure Progress

= Assessment of dataset quality

= \lignettes

= Extension into neuronal models

= Unlocking deeper signaling information through next-gen MS

= (utreach Activities



PCCSE Center Scientific Overview
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Extensive progress building the library . +EEBROAD

Cumulative Profiles

= 3400+ biological samples generated spanning:

= Key infrastructure:
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90 compounds in triplicate spanning many MoA
 Beginning CRISPR/Cas9-based gene disruptions

6 cellular models (breast, lung, skin, prostate, and pancreatic cancers; neuronal precursors)
« 7 assay platforms (+L1000 in collaboration)

« Public data repository with built-in signature visualization (bit.ly/PCCSEData)
 Documented workflows; automated analytical pipeline for reproducibility
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Turning signatures into connections: Signatures
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Signatures are groups of related profiles
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Turning signatures into connections: Similarities

Similarities are correlations computed from signatures
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Replicate consistency describes similarity on the lower diagonal



Consistency rank via similarity assesses dataset quality
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= Average AUC: GCP ~92%, P100 ~96%
= 656% of compounds have signal in GCP (within top 3 recall rank)
= 83% of Compounds have signal In P100 (within top 3 recall rank)



Turning signatures into connections: Connectivity

Similarities are correlations computed from signatures
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Connectivity comes from analysis of the similarity matrix



Turning signatures into connections

Connectivity queries put correlations in context
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The connectivity score is a signed value of the KS-test



Vignette 1: What's a BRAF inhibitor to do when its target is

not a dependency?
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= A375 has mutant BRAF (V600E) and is dependent on it
= Vemurafenib is the top ranked connection ALL cancer lines
= NPCs do not seem to respond at all
= S0 what does it do in the other cell lines?



Vignette 1: What's a BRAF inhibitor to do when its target is
not a dependency?
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= Does vemurafenib inhibit the Notch pathway in PC3?



Vignette 1: What's a BRAF inhibitor to do when its target is
not a dependency?

P100 Connectivities

enib
enik
enib
enib
enib

Query drug 28222
3 33 33
E EFE E E
TR T : : : : ‘
= = : = = 10 05 oo os -10
Cell L3250 g A 04 04 1
< < 20 >
ell type m wmm| Targetdrug Drug Class
b
- - vemurafenib singleton 0.85 1%
|  JQ1-5 BRD inhibitor %
\ Pravastatin Jak/Stat inhibitor 0.63 5%
- H GSKS25T7824 BRD inhibitor %
i} tac rofimus zingleton 0.52 10%
Fropenies | (&2 (m10R AN r B selumetinib Mek inhibitor
' Piasisnih GSK12101514 BRD inhibitor %
k! 5 erteporfin singleton
ol ruz olitinib Jak/Stat inhibitor
Hce® ‘) 4 o decitabine DOMNA methyliransferase inhibd
(Efk e \ i KU-33833 Cell cycle inhibitor
N H - side S
CEBPR “"‘“..‘ Y f-q”---- EEEESI.:!.H: 3?.I_-Il_l'I_:_Ej.\fli-l:..|.:|.'....
NF-xB m £ C JaK >lE ]| LB
AP-1 — o ot
e '
— Aecessoy L/ sREGAS —
= (Connections to BRD inhibitors seem enriched in MCF7?

Many lines seem to have some residual effects in Jak/Stat, which is ~upstream of RAF



Vignette 2: The strange case of Pazopanib in NPCs
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Pazopanib is the top ranked connection all lines
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SMERS3, niclosamide, and dinaciclib are strong (+) connections in cancer lines
However, these 3 are strong (-) connections in NPCs.
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Vignette 2: The strange case of Pazopanib in NPCs

Connectivity of Pazopanib Cancer Connections in NPCs (+) and (-) Connectivity of Pazopanib in NPCs
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= But all of these things are strongly connected in NPCs, just not to pazopanib
= Perhaps Pazopanib has Jak2 selectivity in NPCs? Or NPCs favor JakZ signaling?



Vignette 3: Chromatin connections of MEK inhibitors?
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= Mek inhibitors have a “recallable” signature in chromatin space

= 3 basic classes of response as derived from connections
i i . . NPC Connectivity networks
«  Connections to cell cycle drugs suggest arrest, neutrality, and pro-proliferation
« Again, NPCs show interesting biology with differential connections of PD0325901 and Selumetinib



Preview of the coming year

= More analysis of data set and apps for interaction with the data
 See poster from Lev Litichevsky and Ryan Peckner

= (CRISPR/Cas9-based gene disruptions in multiple cell types
 Already in progress

= Profiling of drug effects in ESC-derived neurons
« The ESC system has inducible Cas9 which will allow for further manipulations
« See poster from Jennie Young, Joel Blanchard, and Fatema Abdurrob

= Deeper mining of comprehensive MS data
« See poster from Jarrett Egertson



Creating neurons for high-content proteomics assays

Passive differentiation via growth factor withdrawal (GFW)

4 weeks



Creating neurons for high-content proteomics assays

Passive differentiation via growth factor withdrawal (GFW)
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Next-gen comprehensive MS will extend the P100

= P100 data have been collected using a “DIA" MS method
 Pioneered by MacCoss Lab

= DIA has the potential to identify and quantify 1000s of phosphosites In
our data

= Akey challenge is developing the algorithms to “unlock” these data



Two innovative tools for comprehensive MS analysis

= Typical Workflow

= ool 1: Pecan
 Uses only peptide sequences

 No spectral or retention time
information

= Tool 2: EncyclopeDIA
 Uses peptide sequences
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Pioneering methods meeting or exceeding goals
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PCCSE Qutreach and Intra-LINCS activities

Signatures of cardiovascular hypertension induced by chemotherapeutic
drugs

« Molecular Cardiology Research Institute, Tufts Medical Center

 See poster from Srila Gopal

Signatures of neuropsychiatric phenotypes and their responses to drugs
In patient-isolated IPS-derived NPCs and neurons
« Massachusetts General Hospital

Mapping of P100 probe-sets onto known pathway networks

 (Georgetown University and University of Delaware
« Together with DCIC through LINCS EDSR

Substrates to promote neuronal fates and phenotypes
 Intra-LINCS with OHSU MEP LINCS Center



PCCSE Overall Summary

= (jreat progress has been made in the first two years in establishing our
center
* Vignettes illustrate the promise of our data

= (Qur neurobiology models are progressing nicely and we are excited to
extend these further

= Next-Gen MS holds great promise for increasing the impact of our work

= \We are poised to use our data “as is” for comprehensive connectivity
analysis, but also as a springboard for comparison with new data to be
made via:
e (Qur continued efforts
« (Qur outreach and collaboration efforts
» Data made by third parties
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