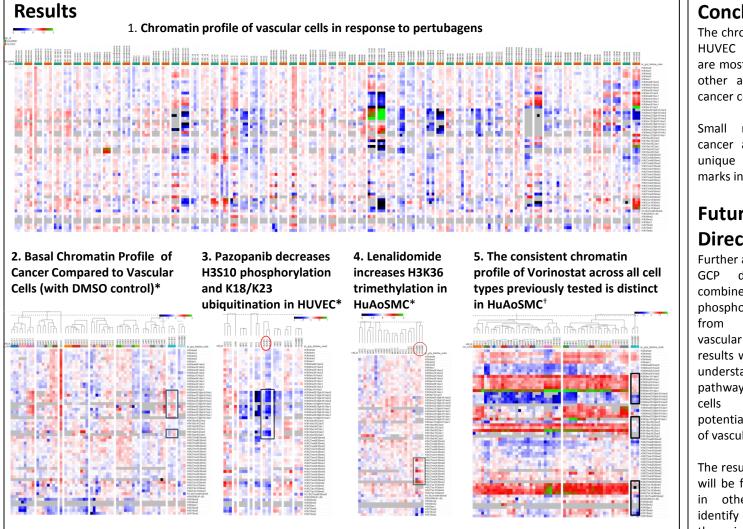

The impact of chemotherapeutic agents on the global chromatin profiles of human vascular endothelial and smooth muscle cells

Srila Gopal ^{1,2}, Wendy Baur², Amanda Creech³, Adam Officer³, Shawn Egri³, Desiree Davison³, Jacob D Jaffe³ and Iris Z Jaffe^{2*} ¹Division of Hematology/Oncology, ² Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, ³Broad Institute of MIT and Harvard, Cambridge, MA

Background

Molecularly targeted anti-cancer therapeutics have revolutionized cancer treatment. Cardiovascular toxicity can be a dose limiting side effect of these agents. Vascular toxicities include hypertension, increased cardiovascular ischemic events and increased risk of arterial and venous thrombosis. The mechanisms of vascular toxicities are unclear and may be related to on- or off-target effects in vascular cells. The blood vessel is made up of an inner lining of endothelial cells surrounded by smooth muscle cells. The endothelial cell is thought to be the central mediator of vascular toxicity. CML TKIS VEGF/VEGFR inhibitors IMiDs


Hypothesis

Anti cancer agents cause changes in the chromatin profile of vascular cells that differ from their effects on cancer cells. Understanding these differences could lead to safer cancer therapies.

Methods

We used the global chromatin profiling assay (GCP) to study the effects of chemotherapeutics on primary human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HuAoSMC) and compared these to profiles from cancer cell lines (MCF7-breast, PC3prostate, A549-lung, A375-skin, NPC-neuronal progenitor cells).

Epigenetic modulators		Kinase inh	Kinase inhibitors		Others	
Drug	Mechanism	Drug	Mechanism	Drug	Mechanism	
Vorinostat	HDACinhibitor	Pazopanib	VEGER, PDGER inhibitor	Tretnoin	RAR agonist	
Decitabine	DNMT inhibitor	Mintinib	BCR-Abl inhibitor	Tacrolimus	Calcineurin inhibitor	
101-5	Reconstanaio inhibitor	LV-294002	PI3-Kinhibitor	Sirolimus	mTOR inhibitor	
G5K126	EZH-2 inhibitor	Okadaic Acid	PP1 and PP2a inhibitor	Lenalidomide	Immunomodulator	
UNC-0646	G9a inhibitor	Tofacitinib	Jak3 inhibitor	Curcumin	NFKB inhibitor	
GSK-J4	Histone demethylese inhibitor	SP600125	Jnk inhibitor	KN-62	CaMKIIalpha inhibitor	
Resveratrol	SirT1 activator	Losmapimod	p38 MAPK	Prevestatio	HMGCoA reductase inhibitor	
		AR A014418	GSK3 inhibitor			
Geldanamycin	HSP 90-inhibitor	If Staurosporine: Pan kinase inhibitor	Pan kinase inhibitor	Rolipram	PDE4 inhibitor	

*Data normalized to row median of processing plate, clustered by Euclidian distance and grouped by cell type. [†]Data normalized to row median of processing plate, clustered by Euclidian distance.

Conclusions

The chromatin profile of HUVEC and HuAoSMC are most similar to each other and differ from cancer cell lines.

Small molecule anticancer agents produce chromatin marks in vascular cells.

Future

Directions:

Further analysis of these data will be combined with P100 phosphoproteomic data from these human vascular cell lines. The results will enhance our understanding of critical pathways in vascular and identify potential mechanisms of vascular toxicity.

The resulting hypothesis will be further explored in other models to cancer therapies with safer cardiovascular profiles.