Library of Integrated Network-based Cellular Signatures Proteomic Characterization Center for Signaling and Epigenetics

Scientific Advisory Board Meeting & Mid-Course Review December 9th, 2016

Jacob D. Jaffe – Broad Institute, Pl Li-Huei Tsai – MIT, co-investigator Michael MacCoss – U. of Washington, co-investigator

Welcome!

Agenda & Logistics

8:30 – 9:00 AM	Introductions and Overviews
	Welcome – Jacob Jaffe, Broad Institute
	Intro to Mid-Course Review Goals – Ajay Pillai, NIH
	Center Overview – Jacob Jaffe, Broad Institute; Li-Huei Tsai, MIT; Michael MacCoss, Univ. of Washington
9:00 – 10:20 AM	Session I: Data Generation & Analysis
	Data Generation Overview (Malvina Papanastasiou, Broad Institute)
	Neural Lineages and Models (Jennie Young, MIT)
	Analysis (Lev Litichevskiy & Ryan Peckner, Broad Institute)
	DIA (Michael MacCoss, Univ. of Washington; Sebastian Vaca, Broad Institute)
	Prook Coffee conved
	break – conee served
10.20 10.50 484	Cassian III Data Dalagaa () Assass
10:30 – 10:50 AM	Session II: Data Release & Access
	Traceability of Experimental Workflows and Metadata (Adam Officer, Broad Institute)
	Public Portal Access (Dave Lahr, Broad Institute)
10.00 11.40 484	Session III. Community Inreach and Outreach
10:50 - 11:40 Alvi	Session III. Community Infeach and Outreach
	LINCS Consortium Common Project (Desiree Davison & Shawn Egri, Broad Institute)
	MEMA Arrays (Fatema Abdurrob, MIT)
	Cardiovascular Models (Srila Gopal & Iris Jaffe, Tufts Medical Center)
	Break – Coffee served
11:40 – 2:00 PM	Session IV: Roundtable Discussions
	Framing Questions for Future Directions – Jacob Jaffe, Broad Institute
12:00 PM	Lunch served (Board Room, 1001M)
12:15 PM	SAB Executive Session and Drafting of Report
1:30 PM	SAB Feedback and Concluding Remarks
2.00 DM	Optional Job Tours and Further Engagement with UNCE DCCCE Marshare
2:00 PM	Optional Lab Tours and Further Engagement with LINCS PCCSE Members

Wifi: Broad

• (no password)

Restrooms

- Teleconference address:
 - <u>https://broadinstitute.zoom.us/j/6177147638</u>
- Logistical assistance:
 - Amy Galaviz
 - agalaviz@broadinstitute.org
 - +1-617-714-7631

Our team will highlight our progress...

Fatema Abdurrob

Joel Blanchard

Amanda Creech

Desiree Davison

Katherine DeRuff

Jarrett Egertson

Shawn Egri

Todd Golub

Jake Jaffe

Dave Lahr

Dan Lam

Lev Litichevskiy

Xiaodong Lu

Mike MacCoss

Brendan

MacLean

Ted Natoli

Adam Officer

Ryan Peckner

Tak Ko

Mukta Bagul

Malvina Papanastasiou

Brian Searle

Vagisha Sharma

Aravind Subramanian

Sonia Ting

Li-Huei Tsai

Jennie Young

Some key outreach collaborators...

Srila Gopal Tufts Medical Center

Iris Jaffe Tufts Medical Center

Stephen Haggarty Mass. Gen. Hospital

Isaac Kohane Harvard Medical School

Roy Perlis Mass. Gen. Hospital

Joe Gray OHSU / LINCS

Laura Heiser OHSU / LINCS

PURPOSE AND PROCESS

THE MID-COURSE REVIEW

Mid-course review criteria

- 1. Feedback on Data Generation & Analysis
- 2. Feedback on Data Release and Accessibility
- **3**. Feedback on Community Outreach
- 4. Feedback on major adaptations going forward
- 5. Other comments/advice

01 - CENTER OVERVIEW

LINCS PCCSE

Mission and methods of the LINCS PCCSE:

The LINCS Proteomic Characterization Center for Signaling and Epigenetics (PCCSE) is dedicated to understanding the therapeutic potential of unlocking the fundamental drugs and mechanisms of action of drugs, genes, and diseases through the lens of their cellular effects on phosphosignaling and epigenetic processes.

- Chemical and genetic perturbations
- Multiple biological models
- Distinct proteomic profiling assays
- Next-generation mass spectrometry
- Extensive collaboration with partners

LINCS is an audacious program; PCCSE has audacious goals

Assembly of the proper team is critical to impact

Massachusetts Institute of Technology

- Neurobiology expertise
- Stem-cell and differentiation experience
- Molecular and cellular biology techniques for neuronal lineages

UNIVERSITY of WASHINGTON

- Next-gen MS methods & analysis dev
- Key software components
- Data dissemination infrastructure
- Deep connections to computational community

- High-throughput proteomics
- Reagents and robust profiling infrastructure
- Experienced analytics teams
- Project coordination and execution

Broad Institute Proteomics enables high throughput profiling

Broad Institute LINCS Common Core creates synergy and cooperation

TSAI LAB - MIT

Using human reprogrammed stem cells (iPSCs) to model disease

Complex neurological disorders are not a single disease at the molecular level

Combinatorial analysis of phosphosites and histone marks give idea to phosphosignaling pathways and epigenetic modifications, and how these processes intersect

 Mechanistic differences via multiple signature assays

LINCS enables systematic study of genetic basis of disease

Drug	Target/Mechanism of Action	Drug	Target/Mechanism of Action
Ex527	SIRT1 and SIRT2 inhibitor	Everolimus	mTOR inhibitor
ruxolitinib	JAK inhibitor	BMS906024	pan-Notch inhibitor
sirolimus	mTOR inhibitor	losmapimod	p38 inhibitor
salermide	SIRT1 and 2 inhibitor	Nilotinib	tyrosine kinase inhibitors
calpain inhibitor II	calpain inhibitor	lenalidomide	immune suppressor, anti-angiogenesis
Tretinonin	Retinoic acid	AR A014418	GSK-3 inhibitor
TBB	CK2/Dyrk1a inhibitor	Selumetinib	MEK1/2 inhibitor
Tofacitinib	JAK inhibitor	VX-970	ATR inhibitor
Olaparib	PARP inhibitor	afuresertib	AKT inhibitor
KN-93	CAMKII/IV inhibitor	lpl145	PI3K delta, gamma inhibitor
KU55933	ATM inhibitor	BMS-345541	nf-KB inhibitor
1271738-62-5	MLL inhibitor	PS-1145	nf-KB inhibitor

- Distinct chromatin states in iPS cells and iPS-derived neural progenitors from Alzheimer's disease patients
- Analysis of GCP signatures from drug perturbations that cluster with PSEN1 isogenic lines
 - genome integrity
 - immune activation

LINCS enables systematic study of genetic basis of autism

- Epigenetic processes are disrupted in neurological disorders such as autism spectrum disorders (ASDs)
- Causal mutations have been found in chromatin-associated enzymes in ASD patients

Aim: Study neural cells during development	
and across cellular subtypes	

Autism Spectrum Disorder Genes									
ADNP	DYRK1a	MECP2	SEMA5A						
ARID1B	EHMT1	NLGN3	SHANK3						
CACNA1C	EIF4G1	NLGN4X	SYNGAP1						
CNTN4	EPC2	NRXN1	TLK2						
CNTNAP2	FMR1	PTCHD1	TSC1						
CREBBP	GRIN2B	PTEN	TSC2						
CTCF	GRIP1	SCN1A	UBE3a						
CTNNB1	GRM5	SCN2a	UBE3b						

- establish epigenetic and phosphosignaling signatures from compound perturbations
- study effects of knocking down chromatin-modifying enzymes
- re-create perturbations in ASD risk genes

Current efforts to establishing neurobiology models

- Creating neural cell types for high-content proteomics assays
 - Generated neural progenitor cells (NPCs) from human embryonic stem (ES) cells
 - Generating neurons with passive differentiation via growth factor withdrawal
 - Future: Will generate microglia and astrocytes
- Establishing a CRISPR/Cas9 neural system
 - H9 Cas9 ES cell lines
 - HUES8 iCas9 ES cell lines
- Outreach with MEP LINCS at OHSU

MACCOSS LAB – UNIV. WASHINGTON

Novel MS data acquisition technologies

Jarrett Egertson Austin Keller

Novel analytical methods for Next-Gen MS

Tool 2: EncyclopeDIA

•

•

- Uses peptide sequences •
- Spectrum or Chromatogram • libraries
- Positional isomers •

Robust tools for data management and sharing

https://chorusproject.org G Chorus - Home Andro	g/pages/dashboa id Devices ႃ Pur	rd.html#/projects/all chasePATH 🔀 System Dashboard - J 🔣 UW-SAGE 👿 UW FinDeskt	top 🗋 UW Proxy 😣 Papers	LINCS DWG 🗋 ADT F	Pulse 🌾 MSDaPI 📋 PDF	Quads - Trail Ma; 🔿 WDMyCloud	☆ i
🚾 Chorus	News Blogs	Application About Support Forum"	Search			Michael MacCoss 🔻	
+ Create -							
Upload Files -	All Projec	ts (187)			Filter list	iii	
GLOBAL REPOSITORY	л́ ID	PROJECT NAME	OWNER	LABORATORY	AREA OF RESEARCH	MODIFIED 🔻 📩	
All Projects	1 1254	Time-resolved Global and Chromatin Proteomics	s d Simone Sidoli	Garcia Lab	Proteomics	Nov 29, 2016	CIL Labor
My Projects	2 1227	Celiac Sprue	Sandi Spencer	MacCoss Lab	Bioanalytical Chemist	Oct 31, 2016	
Shared with Me	3 1036	🌒 Chromatography vs. scan rate	Evgenia Shishkova	Coon Lab - UW madi	Bottom-up proteomics	Oct 27, 2016	Heavy MS D
Public Projects	4 1220	Skyline Tutorials	Brian Pratt	Skyline Testing	Targeted Mass Spec	Oct 18, 2016	Stand
All Experiments	5 1213	Western blot validation	Fredrik Edfors		Proteomics	Oct 16, 2016	Botto
My Experiments	6 1105	PECAN: Library Free Peptide Detection for DIA M	15/ Ying Sonia Ting	MacCoss Lab	DIA Proteomics	Oct 13, 2016	Protec
Shared with Me	7 1212	Parasite Prenvlation	Ellen Yeh	Ellen Yeb	Parasitology	Oct 11 2016	Human I
Public Experiments	9 500	Optimization of DIA on the OF-HF	larratt Egentron	MacCorr Lab	DIA Method Deurlas	0:: 7, 2016	Apolipo
All Files	0 1244	 alpha protophactoria Puogoria pomoroni 120 la 	Jarrett Egenson	Nuon Lab	protein supposis	044 6, 2016	(ApoA-1
My Files	9 (211	apria-proteobacteria Ruegeria pomeroyi TSC-ie SERONIA DR And ATR Lobeling	Drook Nunn	Nunn Lab	protein synthesis oce	0	Cambrid
Shared with Me	10 1182	FERONIA_DB-ACVI-ATP_Labeling	Benjamin Minkott	Sussman Laboratory	Protein Labeling	Oct 3, 2016	Labs!
Public Files	11 965	HeartFailure_acetylation	Alicia Richards	Coon Lab - UW madi	Proteomics and acet	Sep 28, 2016	
All Search Databases	12 1178	DIA Collaboration with ThermoFisher	Philip Remes	MacCoss Lab	DIA Peptide Quantita	Sep 26, 2016	
My Search Databases	13 332	DIA Collaboration with ThermoFisher	Michael MacCoss	MacCoss Lab	DIA Peptide Quantita	Sep 26, 2016	
Public Search	14 1146	IneuroLINCS	Andrea Matlock		iPSC and iPSC derive	Sep 19, 2016	
All Carlos	15 1172	Physical purification of heterochromatin defines	s st Simone Sidoli	Garcia Lab	Epigenetics	Sep 19, 2016	Ger 1
• Mu Scripts	16 1173	🛞 Imaginal Disc Growth Factors Publication Data	Gennifer Merrihew	MacCoss Lab	shotgun proteomics,	Sep 13, 2016	2
Public Scripts	17 1147	③ DeuteRater Development	John Price	JC Price Laboratory B	Kinetic Proteomics	Sep 5, 2016	0
	18 1148	🏐 in vivo ribosome maintenance	John Price	JC Price Laboratory B	Protein Metabolism	Sep 5, 2016	isoto
Trash	19 1114	Red Blood Cells	Erin Weisenhorn	Coon Lab - UW madi	Red Blood Cell Prote	Aug 25, 2016	Isoto
MY LABS	20 1107	Mycobacterium bovis BCG hypoxia proteomics	Yok Hian Chionh	Dedon Lab -MIT	Mycobacteria, stress	Aug 25, 2016	
MacCoss Lab	21 1119	🛞 ҮЗК	Nick Kwiecien	Coon Lab - UW madi	Multi-Omics	Aug 21, 2016	
Files	22 1137	aneurolincs test	Michael MacCoss	MacCoss Lab	test	Aug 9, 2016	
EP2 Orbitrap Fusion	23 1136	Jannsen RA Study	larrett Egertson	MacCoss Lab	Rheumatoid Arthritis	Aug 8, 2016	
• LTQ	24 1120	Histone PTM analysis of 3D cultured HCT116 cold	on Simone Sidoli	Garcia Lab	Epigenetics - 3D cell c	Jul 29, 2016	
LTQ Orbitrap Velos	25 1120	High-resolution mapping of RNA-binding regions	s i Simone Sidoli	Garcia Lab	Protein-RNA interacti	Jul 29, 2016	
LTQ Velos Pro	25 (120	Nuclear photoborrateome analysis of 3T211	202 Assfeb Paking	Destain Paraget Con	Terrented Diseash	Jul 20, 2010	
LTQ-FT Ultra with Ion	20 (120	Nuclear prosproproteome analysis of 313-E1 pr	ea Ateren kabiee	Protein Research Gro	argeted Phosphopr	Jul 25, 2010	
MP1 Orbitrap Fusion	27 1125	Negative UVPD WAX enriched factor V	Michelle Robinson	Brodbelt lab - Uf Aus	Suifoproteomics	jui 20, 2016	
MP5 Orbitrap Fusion	28 1010	S NC PRM	Gregory Potts	Coon Lab - UW madi	Targeted Proteomics	Jul 15, 2016	
Orbitrap Fusion	29 1118	Uezu_Soderling_RawData_July2016	Erik Soderblom	Duke Proteomics Cor	BioID Proteomics	Jul 15, 2016	
Q-Exactive	30 1108	MUMYCEL: proteomic analysis of human hepato	cy Marie-Caroline Smith	Nunn Lab	Human hepatocytes	Jun 28, 2016	
Q-Exactive HF	31 953	Aged C. elegans exposed to PA01	Christina King	Robinson	Bio-analytical Chemis	Jun 23, 2016	
• Quantiza	32 1101	ABRF IPRG2015	Brett Phinney	UC Davis Proteomics	ABRF IPRG	Jun 20, 2016	
Test Bruker Instrume	33 1090	Shared with Andrey	Michael MacCoss	MacCoss Lab	Proteomics	Jun 4, 2016	
UWPR O Exactive	34 1074	Altered metabolic regulation for enhanced xylos	se f Alex Hebert	Coon Lab - UW madi	Yeast Genetics	May 20, 2016 🗸 👻	

Vagisha Sharma Brendan MacLean

Andrey Bondarenko

I: DATA GENERATION & ANALYSIS

LINCS PCCSE

02 - DATA GENERATION OVERVIEW

LINCS PCCSE

Targeted proteomics assays

GCP; ~ 60 probes corresponding to combinatorial post-translational modifications on histone tails

- Monitor the impact of *drug* and *genetic* perturbations in a range of disease and developmental models
- Understanding *processes underlying disease* that will lead to *novel therapeutic intervention*

Perturbation *profiles* are composed of individual quantitative readouts

	-	
1	-2-	

	Co	mpo	und	S									
Flavopiridol Flavopiridol Flavopiridol	Nilotinib Nilotinib Nilotinib	Everolimus Everolimus	Everolimus VX-970	076-XV	VX-970	Tofacitinib Tofacitinib	Tofacitinib	Gene	Site		Flavopiridol	Flavopiridol	Flavopiridoi
								NANS	S275				
_								DDX54	S75				
								ZC3HC1	S321				
								CDC2	T161				
								ATXN2L	S339				
								TPX2	S774				
								RBM14	S618				
								FASN	S207				
								DYRK1A	Y321				
								SRRM1	S402				
								RSF1	S473				

Individual Individual <th></th> <th></th> <th></th> <th></th> <th>(</th> <th>Co</th> <th>m</th> <th>po</th> <th>ur</th> <th>nd</th> <th>S</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					(Co	m	po	ur	nd	S						
Image: Solution of the second of the secon	Flavopiridol	Flavopiridol	Flavopiridol	Nilotinib	Nilotinib	Nilotinib	Everolimus	Everolimus	Everolimus	070-XV	070-XV	VX-970	Tofacitinib	Tofacitinib	Tofacitinib	Peptide	Mark
Image: Solution of the second secon																TKQTAR	H3K4me0
Image: Section of the section of th																TKQTAR	H3K4me1
Image: Solution of the second state																TKQTAR	H3K4me2
TKQTARH3K4ac1H3K9me0k14ac0KSTGGKAPRH3K9me1k14ac0KSTGGKAPRH3K9me1k14ac0KSTGGKAPRH3K9me1k14ac0KSTGGKAPRH3K9me2k14ac0KSTGGKAPRH3K9me3k14ac0KSTGGKAPRH3K9me0k14ac1KSTGGKAPRH3K9me1k14ac1KSTGGKAPRH3K9me1k14ac1KSTGGKAPR																TKQTAR	H3K4me3
KSTGGKAPR H3K9me0k14ac0 KSTGGKAPR H3K9me1k14ac0 KSTGGKAPR H3K9me1k14ac0 KSTGGKAPR H3K9me2k14ac0 KSTGGKAPR H3K9me2k14ac0 KSTGGKAPR H3K9me3k14ac0 KSTGGKAPR H3K9me3k14ac0 KSTGGKAPR H3K9me0k14ac1 KSTGGKAPR H3K9me0k14ac1 KSTGGKAPR H3K9me0k14ac1																TKQTAR	H3K4ac1
KSTGGKAPR H3K9me1k14ac0 KSTGGKAPR H3K9me2k14ac0 KSTGGKAPR H3K9me3k14ac0 KSTGGKAPR H3K9me3k14ac0 KSTGGKAPR H3K9me0k14ac1 KSTGGKAPR H3K9me1k14ac1																KSTGGKAPR	H3K9me0k14ac0
KSTGGKAPR H3K9me2k14ac0 KSTGGKAPR H3K9me3k14ac0 KSTGGKAPR H3K9me3k14ac0 KSTGGKAPR H3K9me0k14ac1 KSTGGKAPR H3K9me1k14ac1																KSTGGKAPR	H3K9me1k14ac0
KSTGGKAPR H3K9me3k14ac0 KSTGGKAPR H3K9me0k14ac1 KSTGGKAPR H3K9me1k14ac1																KSTGGKAPR	H3K9me2k14ac0
KSTGGKAPR H3K9me0k14ac1 KSTGGKAPR H3K9me1k14ac1																KSTGGKAPR	H3K9me3k14ac0
KSTGGKAPR H3K9me1k14ac1																KSTGGKAPR	H3K9me0k14ac1
																KSTGGKAPR	H3K9me1k14ac1

Key innovations that have enabled our progress

Establish production-level workflows

cellular treatments, sample collection, lysis buffers, sample preparation, phosphopeptide enrichment

- Incorporate Quality Control procedures
- Develop automated workflows (BRAVO Liquid Handling Platform)
- Develop Mass Spectrometry analysis methods (Q-exactive series)
- Develop data analysis templates (Skyline)

Harmonized orchestration of data generation

Standard Operating Procedures (SOPs) in Panorama, LINCS

Panorama

LINCS LINCS PCCSE Overview

Overview Information

Start Page >

SOPs

P100

- 1-1 P100 Lysis Buffer Prep.pdf
- 1-2 P100 Automated Protein Assay.pdf
- 1-3 P100 Protein Level Normalization.pdf
- 1-4 P100 Automated Protein Digestion.pdf
- 2 P100 Positive Pressure 96-Well Desalt.pdf
- 3-1 P100 Tip Prep.pdf
- 3-2 P100 Sample Resuspension.pdf
- 3-3 P100 IMAC Enrichment-Agilent-NTA.pdf
- 3-4 P100 RPS Desalt.pdf
- 4 P100 Final Sample Resuspension.pdf
- A1 P100 Synthetic Heavy Mix Stock Creation.pdf
- A2 P100 Data Acquisition Guidelines.pdf

GCP

- 1 GCP Histone Extraction.pdf
- 2 GCP Protein Quantification and Purity Determination.pdf
- 3 GCP Primary Propionylation.pdf
- 4 GCP Protein Oasis Desalt.pdf
- 5 GCP Trypsin Digest.pdf
- 6 GCP Secondary Propionylation.pdf
- 7 GCP Final Desalt.pdf
- 8 GCP Mass Spec Analysis.pdf
- A1 GCP Mastermix and Equimix Formulation Manual.pdf
- A2 GCP Assay Lysis Buffer and Additive Prep.pdf

DISCUSSION |

https://panoramaweb.org/labkey/wiki/LINCS/Overview%20Information/page.view?name=sops

Quantitative readouts of phosphosignaling and chromatin modifications

Unprecedented amount of *drug perturbation* data generated

Cells	Provenance	Institute	Epigenetically Active	Neuroactive	Kinase/Pathway Inhibitors	
A375	Skin Cancer	Broad]
YAPC	Pancreatic Cancer	Broad				
A549	Lung Cancer	Broad				
MCF7	Breast Cancer	Broad				- 3400+
PC3	Prostate Cancer	Broad				
H9	NPCs (ESC-derived)	Broad				
HUES8	NPCs & Neurons	MIT	-	•	•]
iPS	NPCs (patient derived)	Mass General Hospital] con .
HUVEC, HAoSMC	Cardiovascular	Tufts Medical Center				

Completed

In Progress

Genome editing leads next phase of data generation

- CRISPR/Cas9 technology for disrupting genes:
 - modifying the epigenetic landscape
 - implicated in neurodevelopmental disorders
- Proteomic readouts for 1150+ samples to date

Cells	Provenance	Institute	Epigenetic- Related	Autism- related
A375	Skin Cancer	Broad		
YAPC	Pancreatic Cancer	Broad		
A549	Lung Cancer	Broad		
MCF7	Breast Cancer	Broad		
PC3	Prostate Cancer	Broad		
HUES8	NPCs & Neurons	MIT		

Completed

ln Progress

Highlighted achievements of data generation

Developed reproducible, robust and automated workflows

for sample preparation and analysis

- Completely documented SOPs
- Publication of GCP and P100 assays
- Vast amount of data generated & released
- Public Panorama data repository established*
- Increasing number of collaborations

LINCS PCCSE Profiles Released

*<u>https://panoramaweb.org/labkey/project/LINCS</u>

The even more promising future

- Gene editing using the CRISPR/Cas9 system
- Increased neurobiology focus
 - Epigenetic & phosphosignaling signatures at different stages of neural development and cell types
 - CRISPR/Cas9 for genes implicated in neurodevelopmental disorders
- Interactive tools for data analysis
 - Improve our understanding of how perturbations are related to one another
 - Establish connectivity queries for any given perturbation
- Next-generation MS profiling for phosphosignaling
 - Comprehensive mass spectrometry analysis (DIA) for greater phosphosite coverage

03 - NEURAL LINEAGES AND MODELS

LINCS PCCSE

Current efforts in establishing neurobiology models

- Creating neural cell types for high-content proteomics assays
 - Generated neural progenitor cells (NPCs) from human embryonic stem (hES) cells
 - Generating neurons with passive differentiation via growth factor withdrawal
 - Future: Will generate microglia and astrocytes
- Establishing a CRISPR/Cas9 neural system
 - H9 Cas9 ES cell lines
 - HUES8 iCas9 ES cell lines

Current efforts in establishing neurobiology models

- Creating neural cell types for high-content proteomics assays
 - Generated neural progenitor cells (NPCs) from human embryonic stem (hES) cells
 - P100 and GCP signatures from compound treatments

H9 ES-derived neural progenitors

P100 analysis reveals an NPC-specific divergence of signaling pathways

P100 Connectivities in Cancer Cells and NPCs

Query drug	Pazopanib Pazopanib 7 Pazopanib 7 Pazopanib 8 Pazopanib		=	-1 -0.4	0.4 1
Cell type	A549 PC3 NPC MCF YAPC YAPC			Score	Percentile
		Target drug		00010	rerection
		larget urug	Diug Glass	0.85	1%
		Pazopanib	singleton		
		SMER-3	Ubq E3 ligase inhibitor	0.63	5%
		niclosamide	Jak/Stat inhibitor		
		Resveratrol	Sirtuin inhibitor	0.52	10%
		Dinaciclib	Cell cycle inhibitor		
		Nilotinib	Bcr-Abl inhibitor		
		SP600125	Jnk inhibitor		
		C646 (CHEMBL1797936) Acetyltransferase inhibitor		
		SCH 900776	Cell cycle inhibitor		
		dactolisib	PI3K inhibitor		
		momelotinib	Jak/Stat inhibitor		
		Roscovitine	Cell cycle inhibitor		
		OSI-027	mTOR inhibitor		
		LY-294002	PI3K inhibitor		
		staurosporine	singleton		
		KU-55933	Cell cycle inhibitor		
		Etoposide	singleton		
		belinostat	HDAC inhibitor		
		Okadaic Acid	singleton		

Connectivity of Pazopanib Cancer Connections in NPCs

Query drug	Dinac ic lib nic los amide SMER-3		
Cell type		-	
		larget drug	Drug Class
		C646 (CHEMBL1797936) Acetyltransferase inhibitor
		niclosamide	Jak/Stat inhibitor
		SMER-3	Ubg E3 ligase inhibitor
		Dinaciclib	Cell cycle inhibitor
		flavopiridol	Cell cycle inhibitor
		JQ1-S	BRD inhibitor
		trichostatin A	HDAC inhibitor
		bafilomycin A1	singleton
		GSK1210151A	BRD inhibitor
		Okadaic Acid	singleton
		Etoposide	singleton
		SCH 900776	Cell cycle inhibitor
		GSK525762A	BRD inhibitor
		PD-0332991	Cell cycle inhibitor
		Tofacitinib	Jak/Stat inhibitor
		BIX-01294	G9A inhibitor
		Verteporfin	singleton
		Resveratrol	Sirtuin inhibitor
		RO4929097	Notch pathway inhibitor

 Pazopanib is a top ranked connection in all cell lines but downstream effectors are strong negative connections in NPCs

Growth factor withdrawal enables large-scale production of mature neurons

- Passive differentiation of NPCs into neurons through growth factor withdrawal (GFW)
 - mature neurons in ~8 weeks
 - heterogeneity of culture

P100 analysis reveals a convergence of signaling states from NPCs to neurons

- Committed neurons cluster together in their phosphoproteomic signatures
- P100 signatures are distinct between NPCs, differentiating neurons, and breast cancer cells

Current efforts in establishing neurobiology models

- Establishing a CRISPR/Cas9 neural system
 - H9 Cas9 ES cell lines
 - HUES8 iCas9 ES cell lines

Autism Spectrum Disorder Genes							
ADNP	DYRK1a	MECP2	SEMA5A				
ARID1B	EHMT1	NLGN3	SHANK3				
CACNA1C	EIF4G1	NLGN4X	SYNGAP1				
CNTN4	EPC2	NRXN1	TLK2				
CNTNAP2	FMR1	PTCHD1	TSC1				
CREBBP	GRIN2B	PTEN	TSC2				
CTCF	GRIP1	SCN1A	UBE3a				
CTNNB1	GRM5	SCN2a	UBE3b				

Production of H9 ESCs with stable Cas9

• H9 embryonic stem (ES) cells transduced with FLAG-tagged Cas9 lentivirus

Dual-Smad inhibition used to differentiate parental H9 ES cells into neural progenitor cells (NPCs)

H9 Cas9 ES-derived NPCs fail validation

- Establishing a CRISPR/Cas9 neural system
 - H9 Cas9 ES-derived NPCs
 - resistant to lentiviral transduction
 - $-\,$ very sensitive to puromycin (0.2 $\mu g/ml)$
 - low CRISPR/Cas9-editing

Criteria	Test
Inducible Cas9 Expression	
sgRNA Transduction	
Puromycin Selectability	
CRISPR/Cas9-Editing	
Passed validation	

Failed validation

HUES8 with inducible Cas9 are a promising model system

€

Memorial Sloan-Kettering Cancer Center Danwei Huangfu

Lentivirus

Transduction &

Selection

+Puromycin

Optimization of HUES8-iCas9 NPCs for CRISPR/Cas9-editing

- Establishing a CRISPR/Cas9 neural system
 - HUES8-iCas9 NPCs
 - good Cas9 expression in response to doxycycline (Dox)
 - tolerant of lentiviral transduction

Optimization of HUES8-iCas9 NPCs for CRISPR/Cas9-editing

- Induction of Cas9 expression in HUES8-iCas9 NPCs
 - Dox concentration: 1 µg/mL
- Transduction efficiency with lentivirus for sgRNA delivery
 - at given seeding density and lentiviral titer: 3 virus particles/cell
- Sensitivity to puromycin to select for sgRNA transduction
 - puromycin kill curve: 2 µg/mL
- Assessment of CRISPR/Cas9-mediated editing
 - Broad GPP lentiviral Cas9 activity assay

04 - ANALYSIS

LINCS PCCSE

Small-molecule dataset contains >3400 samples

• 2 assays x 6 cell lines x 90 compounds (including controls) x 3 replicates

3 ways to look at these data: profiles, similarities, and connectivities

Later today: data accessibility by Dave Lahr, metadata by Adam Officer

3

0

-3

0

GCP profiles show expected effects

 Histone deacetylase (HDAC) inhibitors cause increased acetylation

Acetylation marks highlighted

P100 profiles show expected effects

Staurosporine and okadaic acid have widespread effects

N.B. Matrix transposed

Similarity between biological replicates is high

Looking at connectivity b/w compounds with the same mechanism of action (MOA) helps compare & contrast assays

MOA recall can be cell line-specific

GCP

For example, Mek inhibitors (n=2) in GCP

Selumetinib	NPC
Selumetinib	NPC
Selumetinib	NPC
PD0325901	NPC
PD0325901	NPC
PD0325901	NPC

Selumetinib	NPC
Selumetinib	NPC
Selumetinib	NPC
PD0325901	NPC
PD0325901	NPC
PD0325901	NPC

Integrating the 2 assays increases our confidence in connections

Vemurafenib connects to Mek inhibitors in A375 only

 Only A375 cells have the V600E BRAF mutation that makes them vulnerable to treatment with vemurafenib

A375	A549 MCF7	NPC	PC3	YAPC	GCP + P100		
					pert_iname	moa	
					PD0325901	Mek inhibitor	
					Selumetinib	Mek inhibitor	

Tran, Drug Design, Dev., and Therapy, 2015

C646, SMER-3, and cell cycle inhibitors consistently connect

GCP+P100

MEDIAN

Acetyltransferase inhibitor

E3 ligase inhibitor

Cell cycle inhibitor

Query = SMER-3

Visualizing networks of connectivities increases the informativity of queries

 Querying niclosamide within a network of connectivities shows that it connects to cell cycle inhibitors instead of its fellow Jak/Stat inhibitors.

GCP PC3

The network perspective allows for querying of extra-LINCS information

- Connectivites can be combined with GO annotations, MOAs and known gene targets to allow query of biological terms not directly within the scope of LINCS.
- Query *histone deacetylation* in GCP (only positive connections shown)

Viewing connectivities within a network allows results to be ranked a la Google:

A375	A549	MCF7	PC3	NPC	YAPC
belinostat	belinostat	MS.275	MS.275	belinostat	MS.275
MS.275	MS.275	vorinosta	belinostat	CI.994	vorinosta
CI.994	vorinosta	belinostat	trich A	vorinosta	CI.994
vorinosta	CI.994	CI.994	CI.994	MS.275	belinostat
trich A	EX.527	trich A	vorinosta	trich A	EX.527

These ranks are derived directly from connectivity scores.

The network perspective allows for querying of extra-LINCS information

• Query *epithelial cell proliferation* in P100

Of eight profiled compounds whose gene targets relate to epithelial cell proliferation, Notch pathway inhibitors are the only MOA class to have multiple members appear with significant connections.

The network perspective allows for querying of extra-LINCS information

Query protein ubiquitination in GCP

Lenalidomide, which has recently been shown to modulate ubiquitin pathways, appears consistently .

Conclusions

- Analysis of LINCS proteomics data reveals both known and potentially novel biology, as well as robustness of the assays
- Connections between perturbations take on new dimensions of meaning when viewed through the lenses of multiple assays
- Visualization and interpretation of networks of connectivities opens the door to Google-type searching of LINCS proteomics data by non-LINCS queries

05 – DATA INDEPENDENT ACQUISITION (DIA)

LINCS PCCSE

Data Independent Acquisition – targeted chromatogram extraction

VLENTFEIGSDSIFDK++ (790.4 m/z)

Extraction of fragment ions from DIA data

Venable et al Nat Methods 2004 Dong et al Science 2007

DIA is all about balance (and sacrifice)

Improving precursor selectivity with overlapping DIA windows

20 *m/z* DIA

BUILDING THE PHOSPHO-SUPERLIBRARY

LINCS PCCSE

Comprehensive spectral/chromatographic libraries are needed to improve DIA analysis

- Spectrum-centric DIA data analysis:
 - Needs spectral/chromatographic library
 - High-quality libraries are necessary
- DDA-based spectral libraries are affected by the semi-stochastic nature of the parent ion selection
 - Spectra used for peptide identification might not be informative enough for peptide quantification
 - DDA produces incomplete datasets
- Comprehensive analysis of proteomes by DIA
 - DIA promises to acquire a signal for all peptides above the instrument's LOD
- Challenges:
 - Design the right DIA method for the spectral/chromatographic library
 - Data-treatment workflow for DIA data

Narrow-window DIA enables a comprehensive proteome analysis

m/z

• Sample:

- Pool of 32 samples (PC-3 cells) treated with 32 drugs
- Includes P100 heavy-labelled standard peptides
- MS Method:
 - Thermo Fisher Orbitrap Fusion Lumos
 - DIA method:
 - 12 DIA LC-MS runs each covering only 50 m/z
 - Narrow-window DIA: 25 x 2m/z
 - Cycle time <3 sec

High-quality data enabled by adapted quantitative proteomics tools

A "Decoy-Decoy" approach proves the low false discovery rate of the strategy

- Searching for what is not there
 - Sample: <u>Human</u> cell line (Jurkat) whole digest
 - Database search: <u>Archaea</u> database (~19000 proteins)
 - Validation using Percolator
- No hits should be found in these conditions
- The SpectrumMill + Percolator workflow produces a very low false discovery rate
- Extremely conservative

- Only 4 peptides were identified
- All shared peptides between the archaea and the human proteome

A "Super Spectral Library" more than doubles potential signaling analytes

Sample:

- Pool of 32 samples (PC-3 cells) treated with 32 drugs
- Includes P100 heavy-labeled standard peptides
- Identification of:
 - 18408 modified peptides sequences (3x additional IDs compared to DDA)
 - 20570 precursor ions (3x additional IDs compared to DDA)
 - 14363 Phosphopeptides (+49% compared to DDA)
 - 4968 Localized phosphosites (+29% compared to DDA)

The high selectivity and untargeted acquisition of narrow-window DIA increases sensitivity

- This peptide would be difficult (not possible) to identify with DDA
- The narrow-window DIA enables its identification

Narrow-window DIA improves quantification of phosphorylated isomers

In the super library

- Relative intensities
- Well-responding specific-transitions

Chromatograms of site-specific fragment ions enable the characterization of phosphorylation positions

Our strategy significantly increases signaling pathway coverage

Highly conservative filtering criteria

Increased coverage of signaling pathways

Queried: Super library (20570 precursors) Detected: 11341 candidate precursors Quantified: 2841 peptides / 3539 precursors Top of the basket filtered peptides:

- 5 transitions
- Mean dot-product among all samples >0.75
- At least one replicate with mean dotp>0.90
- > At least one replicate with mean intensity higher than the median of all intensities

Conclusion

- Narrow-window DIA enables a comprehensive proteome analysis
- Developed a data-analysis workflow that insures high-quality and confident identifications
- We can demonstrate that the approach generates low false discovery rate
- Increased the number of identified phosphopeptides and phosphorylation sites
- The "Super Spectral Library" significantly increases the number of potential signaling analytes that can be quantified
- Our strategy significantly increases signaling pathway coverage

In the future

- There's a need to obtain an automatized, accurate and robust DIA data analysis pipeline
- Querying the raw data with peptide-centric analysis (PECAN)
 - Chromatographic libraries would provide more specificity
- P100 DIA datasets are already acquired and ready to be analyzed

II: DATA RELEASE AND ACCESS

LINCS PCCSE

06 – TRACEABILITY OF EXPERIMENTAL WORKFLOWS AND METADATA

LINCS PCCSE

Central organization enables quick access to experimental plans

- LINCS Experimental Tracking
 - Stored on Google Drive for easy access

			0	,								A	В		С	D	E	F	G	н
	A	в	с	D 4	⊧ F	G	н	1	JK	L M	1 N	Guide Plate 2								Plate 41
1									P100						:					
2	Plate	Cell Type	Description	Collection Date	Harv	Pre	Dig	Enr	Res Anlz M		∧eta ⊦	+ ≡ Overall Plan → G	III uide and Process I	nfo 👻 Infection Tra	acking - Trea	tment Day and L	.ysis Plan 👻 P1	00 Processing Work	flow - G	CP Processir
30																				
31	Plate 32	YAPC	CMPD Tranche 3	20151022	2 3	3	3	3	3 3	3 3	3	3								
32	Plate 33	A549	CMPD Tranche 3	20151118	3	3	3	3	3 3	3 3	3	3								
33	Plate 34	PC3	CMPD Tranche 3	20151118	3 3	F	roc	ess	5			Date Comple	ted	Initials			Note	es/Detai	ls	
34	Plate 35	MCF10a	LINCS Common Project	20160218	3 3				-										-	
35	Plate 36	iPS	Haggarty Pilot	20160104	3	H	larve	est				2	0160613	AO, DD,	AC, XL	, SE, DL	_ See '	Overall Pl	lan"	
36	Plate 37	A375-311	Cas9/sgRNA pilot	20160202	2 3	L F	listor	ne F	- straction	n		2	0160830	SE AC						
37	Plate 38	HUVEC	Y1 Outreach	20160411	3				Service	•		-					-			
38	Plate 39a	HAOSMC	Y1 Outreach	20160524	l n/a	n H	rote	in A	\ssay			2	0160830	SE			Sam	oles below	v 10u	g: none
39	Plate 39b	HAOSMIC	Y1 Outreach	20160627	3	F	rima	rv F	Propionv	lation		2	0160915	SE			BRAN	/O Used:	Marv	in
40	Plate 40	A375-311	Cas9 Plate 1	20160426	5 3			· · ·				_								
41	Plate 41	A375-311	Cas9 Plate 2	20160531	3		asis	De	esalt			2	0160915	SE						
42	Plate 42	A375-311	Cas9 Plate 3	20160613	8 3	Т	rvps	in D	Diaest			2	0160920	AC			BRAN	/O Used:	Marv	in
43	Plate 43	MCF10a	Time-course pilot	20160719-22	3						-	-	0400000	10			DDA	0.0		
44	Plate 44	YAPC-311	Cas9 Plate 1	20160816) <u>ງ</u>	2	ecor	nda	ry Propie	onyiatio	n	2	0160922	AC			BRAN	/O Used:	Marv	IN
40	<u>Plate 45,46</u>	mixed IPS	Haggarty Pilot	Ŷ	3	S	epP:	ak[Desalt			2	0160923	AC						
						F	lesu	spe	nsion			2	0160929	SE						
						D)ata /	Acq	uisition			2	0161007	AC			LC-M	S system	use	d: LC B, Tesla
						D)ata (QC				2	0161016	AC						
						Ν	letad	lata	Attachr	nent										

Guide Plate

LINCS-Y2Q4-Plate41_A375_sgRNAs_Plate02_Experimental_Plan 🔆 🦚

Consistent server organization allows for facile data access

- Actual experimental data stored on our server
 - Data far too large to store on Google Drive
 - Raw MS files alone for one experiment are > 500 GB

- Folders organized by assay type
 - Metadata kept in shared location
 - Allows for mutual access and maximizes inter-assay agreement

- Further segmented into experiment ID and data types
 - Template folders to keep data management consistent
 - Unified naming system
 - Additional experimental tracking information stored here

DCIC involved in curation of metadata for interoperability and future integration

Genetic Perturbagens

- PAM sequence
- Target gene information
- Internal ID

Small Molecule Perturbagens

- Compound Name
- PubChem CID
- Batch information
- Internal ID

Information registered with DCIC who assign unique LSM/LNA identifiers

- Used in data integration across multiple assay types
- All metadata verified with the DCIC prior to sample annotation

Collect metadata for compounds and viruses, verify and register with DCIC and input into our databases

- Aim to minimize human intervention in this process
- Assign unique sample IDs

- More than 20 metadata fields are assigned to each sample prior to release
- Retain several more for internal records

Metadata organization allows for quick attachment and verification

- Curated master compound/virus metadata database
 - Sourced from the DCIC ٠
- Metadata and sequence generation
 - Minimized number of input fields
 - Used by MS for acquisition
- MS data acquisition
 - Maximize redundancy and traceability
 - Metadata incorporated into MS files ٠
- MS data QC via Skyline
 - Reattach metadata and integrate preliminary results

Internal ID#	Compound	l Name	SM_Cen	ter_Sample	e_ID PubCh	em ID Isor	neric SMILE	S LSM I	D TI	reatment Conc
12-1-1	staurospor	ine	BRD-K17	7953061		44259 C[C	@@]12[C@	@H] LSM-1	103	1
12-1-2	staurospor	ine	BRD-K17	7953061		44259 C[C	@@]12[C@	@H]LSM-1	103	1
	Compound		BRD# of		Isomeric	tomated ge	eneration to	reduce err	ors	
Internal ID#	Name	LSM ID	Compound	Pubchem CID	SMILES string	Acquisition L	C N	N		0/45/004
89-1-5	DMSO	SM-36361	BRD-K08970894	679	CS(=O)C	Acquisition D Study Identif	ate	2100 Plate39b HA	SMC Cardio	9/15/201
89-1-5		SM-36361	BRD-K08970894	679	CS(=0)C	Path		C:\Curie_Public\20	16_Sept\LINC	5
87-1-0 I	DIVISO	.SIVI-30301	BRD-R08970894	679	C3(=0)C		C	:\Xcalibur\metho	s\LINCS\P100	DIA_11amu_Overlap_22
	СМ20160	908_P1(0_Plate3	<u>9b_HAoS</u>	Un MC Cardi	ique Sampl	e IDs genera ch_p-003	ated, integ 9b_A01_	rated in _acq_0	to raw files
	CM20160 Type: Un Sample Comment	908_P1(nknown Name: .s:	00_Plate3 ID: PHC-4	8 <u>9b_HAOS</u> 14828-00 BRD-K08	Un MC Cardi 1A01 Row 8970894_I	ique Sampl oOutrea : 0 DMSO_0_1	e IDs genera ch_P-003 1M_3_h_r	ated, integ 9b_A01_ ep_01	rated in _acq_0	to raw files
Document Grid: p100_	CM20160 Type: Un Sample Comment	908_P1(nknown Name: .s:	00_Plate3 ID: PHC-4	8 <u>9b_HAoS</u> 14828-00 BRD-K08	Un MC Cardi 1A01 Row 8970894_1 Att	ique Sampl oOutrea : 0 DMSO_0_u cachment o	e IDs genera ch_P-003 1M_3_h_r f metadata a	ated, integ 9b_A01_ ep_01 and reverif	rated in _acq_0 ication	to raw files
Document Grid: p100_ Views • II 4 4 1 Replicate	CM20160 Type: Un Sample Comment	908_P1(nknown Name: .s: HECK	DO_Plate3 ID:PHC-4	89b_HAoS 4828-00 BRD-K08	Un MC Cardi 1A01 Row 8970894_I Att	ique Sampl oOutrea : 0 DMSO_0_1 :achment o	e IDs genera ch_P-003 nM_3_h_r f metadata a	ated, integ	rated in _acq_0 ication	to raw files
Document Grid: p100_ Views - II 4 4 1 Replicate Name	CM20160 Type: Un Sample Comment	908_P10 hknown Name: s: HECK	DO_Plate3 ID:PHC-4	BRD-K08	Un MC Cardi 1A01 Row 8970894_I Att	ique Sampl oOutrea : 0 DMSO_0_1 :achment o	e IDs genera ch_P-003 1M_3_h_r f metadata a	ated, integ 9b_A01_ ep_01 and reverif	rated in _acq_0 ication	to raw files
Document Grid: p100_ Views - II III Replicate Name ► A01_acq_01	CM20160 Type:Un Sample Comment	908_P10 hknown Name: s: HECK	DO_Plate3 ID:PHC-4	89b_HAoS 4828-00 BRD-K08	Un MC Cardi 1A01 Row 8970894_I Att	ique Sampl OUTTEA : 0 DMSO_0_1 Cachment of r det_nomalization	e IDs genera ch_P-003 1M_3_h_r f metadata a (N20160915_P1)	ated, integ 9b_A01_ ep_01 and reverif pert_id BRD-K08970894	rated in _acq_0 ication	to raw files
>ocument Grid: p100_ Views ▼ ■ ■ Replicate Name A01_acq_01 A02_acq_01	CM20160 Type:Un Sample Comment	908_P10 hknown Name: s: HECK I I a Expor cell_id A HAoSMC A HAOSMC	00_Plate3 ID:PHC-4	89b_HAoS 4828-00 BRD-K08	Un MC Cardi 1A01 Row 8970894_I Att	ique Sampl oOutrea : 0 DMSO_0_u cachment or r det_nomalization 1 1	e IDs genera ch_P-003 1M_3_h_r f metadata a c det_filename CN20160915_P1 CN20160915_P1	ated, integ 9b_A01_ ep_01 and reverif pert_id BRD-K08970894 BRD-K08970894	ication	to raw files

Export GCT for data analysis

Easy integration with existing tools and frameworks

CMap/L1000 tools

INCS_GCF	Pla_	te4	11_a	nn	otat	ed	_mi	nim	nize	ed_	20	16-	11-	18	_16	-16	5-3	9.p	гос	es	se	d	×		
Rows Colui	ows Columns -							s	ho	win	g S	56/	56	۲O۱	NS,	96									
det_wel	<u>5</u> 5	A3	2 A4 A5	2 A6	₹ 88	A9	A10	A12	ñ	82	88	58	98	6 8	88	B10	81 1	212	02 C2	02 C3	40	90 0	85	58	C9
pert_iname	KAT5_sg01 KAT5_sg01	KAT5_sg01	SUV39H1_sg0;	SUV39H1_sg0;	SMYD2_sg01 SMYD2_sd01	SMYD2_sg01	KMT2A_sg02	KMT2A_sg02	ASH2L_sg01	ASHZL_sg01	ASHZL_sgu1	CBX3_sg02	CBX3_sg02	CBX3_sg01	CBX3_sg01	ASH2L_sg02	ASHZL_sg02	SI MADIN SQUZ	SUV420H1 sg	SUV420H1_sg(SMYD2_sg02	SMYD2_sg02	SMYD2_sg02	CHD8_sguz	CHD8_sg02
			i,																				1		
																							1		
															1										
M	0	rr	bh	16	εı	15	5																		

Skyline/Proteomics tools

Panorama	PanoramaWeb	
	E Overview	
GCP		
Create Custom GCT		
Experiment type:		
Experiment type.	DIA OF FRM ·	
Select replicate annotatio	ns e drop-down list for each annotation	
	NPC 4549	~
Cell Id	× NPC	
	× A549	
	G-0018, G-0025	~
Plate	× G-0018	
	× G-0025	
internal_guide_enumerato	or	~
na_transcript_id		~
ncbiprobe_id		~
Porturbation Name		×
Ferturbation Mame		•
Perturbation Type		*

- Direct integration into existing pipelines through GCT file format
- Panorama allows for easy subsetting of PCCSE data
- Careful tracking and integration of metadata is critical for later analysis!
 - From trivial (like process tracking) to complicated (leveraging outside information for "Google-like" search)

07 – PUBLIC PORTAL ACCESS

LINCS PCCSE

Data release & accessiblity – providing public portal & tools

- Access vs. Accessibility
 - Access: it is is possible for someone to retrieve the data
 - Accessibility: making it as easy as possible for someone to discover and use the data
- Ongoing goal: provide tools to visualize & analyze PCCSE data
 - Quick wins: reuse & extend existing CMap / L1000 tools
- How: align data levels, metadata and file formats

Panorama is the main LINCS PCCSE data repository

- Publish fully annotated Skyline documents
- Build chromatogram libraries
- Aggregate lab QC data (future)
- Free hosted version (<u>http://panoramaweb.org</u>)
 - 206 separate projects so far (LINCS, CPTAC, & ABRF sPRG)
 - >7000 data sets uploaded
 - User controlled security
- Locally installable server application
- Free and open source (Apache 2.0)

Leveraging aligned data levels, metadata and file formats to quickly achieve accessible data

COMPZ.MODZ

P

	LCMS	PEAK	DETECTION	SUMMA	RIZATION	QC + NC	DRM	DIA QUE	RY	SIGNATURE QU	ERY	RELATIONSHIPS	;
			A	NUM Image of the second s								°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	_
LCI 96-w	MS from ell plates	Skyline software- mediated peak integration		Combination and reporting of data		Probe and outlier rer normaliz	sample noval, ation	Mine DIA data for n analytes (F	MS ovel P100)	Use replicate profiles to identi connections	ify	Compute connect across entire signa data set	vity iture
L	смs 다	sкү Ӷ → Ҁ		F	RPT Ф		DRM S		2	sigq T		GRAPH	_
	SCAN	DECONVOL				LIZATION	INFE	RENCE	DIF EX	FERENTIAL	AC	REPLICATE GREGATION	
				1k		1k		20k		20k →		-	
Scan 384 plates		4-well	Deconvolute colors to 100 genes	500 00	Scale 80 genes	control	Use la to infe transc	ndmarks r entire riptome	Con treat cont	npare replicate tments to trol	Cc m	ombine ultiple plicates	

QNORM

P

INF DATA

4

ZSP

Cp

Aligned data levels for Proteomics and L1000:

GEX

A

LXB

7

Consistent metadata fields and values:

pert_id	BRD-K12345678
pert_type	trt_cp
pert_iname	vemurafenib

Reused GCT file format:

n4

n1

n3

n2

Panorama website allows searching/browsing, visualization and analysis

The Chorus Project

Usage Statistics

http://chorusproject.org

 mups://cnorusproject.org/ Chorus - Home Android 	Devices Purchase	nim/projects/aii PATH 🤇 System Dashboard - J 🐨 UW-SAGE 🐨 UW FinDesktop	🖞 UW Proxy 💈 Papers	🖬 LINCS DWG 🗋 ADT F	Pulse 🎏 MSDaPI 📋 PDF	Quads - Trail Mar 🔿 WDMyCloud	म प «
🐱 Chorus 🛛 🖻	lews Blogs A	pplication About Support Forum [*] Q Sear	ch			Michael MacCoss 🔻	
+ Create +							
Upload Files 🕶	All Projects (1	87)			Filter list	iii	
GLOBAL REPOSITORY	л ID	PROJECT NAME	OWNER	LABORATORY	AREA OF RESEARCH	MODIFIED 🔻 📩	
All Projects	1 1254	Time-resolved Global and Chromatin Proteomics d	Simone Sidoli	Garcia Lab	Proteomics	Nov 29, 2016	Cambridg CIL Laborator
My Projects	2 1227	③ Celiac Sprue	Sandi Spencer	MacCoss Lab	Bioanalytical Chemist	Oct 31, 2016	
Shared with Me	3 1036	Chromatography vs. scan rate	Evgenia Shishkova	Coon Lab - UW madi	Bottom-up proteomics	Oct 27, 2016	Heavy-L MS Prot
Public Projects	4 1220	Skyline Tutorials	Brian Pratt	Skyline Testing	Targeted Mass Spec	Oct 18, 2016	Standar
All Experiments	5 1213	Western blot validation	Fredrik Edfors		Proteomics	Oct 16, 2016	Bottom-
My Experiments	6 1105	PECAN: Library Free Peptide Detection for DIA MS/	Ying Sonia Ting	MacCoss Lab	DIA Proteomics	Oct 13, 2016	Proteon
Shared with Me	7 1212	Parasite Prenylation	Ellen Yeh	Ellen Yeh	Parasitology	Oct 11, 2016	Human Insu Factor 1 (IG
Public Experiments	8 528	Optimization of DIA on the OE-HF	larrett Egertson	MacCoss Lab	DIA Method Develop	Oct 7. 2016	Apolipoprot
All Files	9 1211	alpha-proteobacteria Ruegeria pomerovi 13C -leur	Brook Nunn	Nunn Lab	protein synthesis oce	Oct 6, 2016	Now availa
My Files	10 1182	FERONIA DR.Acyl-ATP Labeling	Benjamin Minkoff	Sussman Laboratory	Protein Labeling	Oct 3, 2016	Cambridge
Shared with Me	11 065	HeartFallure acetulation	Aliaia Diskaada	Coord lab UW madi	Protecting and even	See 29, 2016	Labs!
Public Files	10 1170	DIA Collaboration with ThermoEisbor	Divilia Remon	MacCase Lab	Proteomics and acec	Sep 26, 2010	
All Search Databases	12 1176		Philip Remes	Maccoss Lab	Dix Peptide Quantita	Sep 20, 2010	
My Search Databases	13 332		Michael Maccoss	Maccoss Lab	Dix Peptide Quantita	sep 20, 2010	2
Public Search	14 1146	neuroLINCS	Andrea Matlock		iPSC and iPSC derive	Sep 19, 2016	in
All Scripts	15 1172	Physical purification of heterochromatin defines st	Simone Sidoli	Garcia Lab	Epigenetics	Sep 19, 2016	2
My Scripts	16 1173	Imaginal Disc Growth Factors Publication Data	Gennifer Merrihew	MacCoss Lab	shotgun proteomics,	Sep 13, 2016	6
Public Scripts	17 1147	OeuteRater Development	John Price	JC Price Laboratory B	Kinetic Proteomics	Sep 5, 2016	
Trash	18 1148	in vivo ribosome maintenance	John Price	JC Price Laboratory B	Protein Metabolism	Sep 5, 2016	isotop
	19 1114	Red Blood Cells	Erin Weisenhorn	Coon Lab - UW madi	Red Blood Cell Prote	Aug 25, 2016	
MY LABS	20 1107	Mycobacterium bovis BCG hypoxia proteomics	Yok Hian Chionh	Dedon Lab -MIT	Mycobacteria, stress	Aug 25, 2016	
MacCoss Lab	21 1119	🕘 ҮЗК	Nick Kwiecien	Coon Lab - UW madi	Multi-Omics	Aug 21, 2016	
Files	22 1137	neurolincs test	Michael MacCoss	MacCoss Lab	test	Aug 9, 2016	
EP2 Orbitrap Fusion	23 1136	Jannsen_RA_Study	Jarrett Egertson	MacCoss Lab	Rheumatoid Arthritis	Aug 8, 2016	
• LTQ	24 1129	Histone PTM analysis of 3D cultured HCT116 colon	Simone Sidoli	Garcia Lab	Epigenetics - 3D cell c	Jul 29, 2016	
LTQ Orbitrap Velos	25 1128	High-resolution mapping of RNA-binding regions i	Simone Sidoli	Garcia Lab	Protein-RNA interacti	Jul 29, 2016	
LIQ Velos Pro LIQ ET Ultra with la-	26 1126	Nuclear phosphoproteome analysis of 3T3-L1 prea	Atefeh Rabiee	Protein Research Gro	Targeted Phosphopr	Jul 29, 2016	
MP1 Orbitrap Fusion	27 1125	Negative UVPD WAX enriched factor V	Michelle Robinson	Brodbelt lab - UT Aus	Sulfoproteomics	Jul 26, 2016	
MP5 Orbitrap Fusion	28 1010	NC PRM	Gregory Potts	Coon Lab - UW madi	Targeted Proteomics	Jul 15, 2016	
Orbitrap Fusion	29 1118	Uezu_Soderling_RawData_July2016	Erik Soderblom	Duke Proteomics Cor	BioID Proteomics	Jul 15, 2016	
Q-Exactive	30 1108	MUMYCEL: proteomic analysis of human hepatocy	Marie-Caroline Smith	Nunn Lab	Human hepatocytes	Jun 28, 2016	
Q-Exactive HF	31 953	Aged C. elegans exposed to PA01	Christina King	Robinson	Bio-analytical Chemis	Jun 23, 2016	
QEHF2	32 1101	ABRF IPRG2015	Brett Phinney	UC Davis Proteomics	ABRF IPRG	Jun 20. 2016	
Quantiva	33 1090	Shared with Andrey	Michael MacCoss	MacCoss Lab	Proteomics	Jun 4, 2016	
 Test Bruker Instrume 		······································					

New paradigm for data storage and processing of MS "big" data

- Proteomics data needs to be "un-siloed"
 - A single place for all data
- Volume of high value data is increasing
- Crucial for peer review and critical analysis
- Economics are driving demand for data reuse
- Cultural shift: Public access to data collected with public funds
- We need to bring algorithms to the data
- We want to be able to do computations across all data and not a tiny subset

III: COMMUNITY INREACH & OUTREACH

LINCS PCCSE

PCCSE community inreach and outreach efforts

- Drug signatures in patient iPS-derived neuronal models (Steve Haggarty, MGH)
- Drug signatures in breast epithelial models (LINCS) MCF10A common project
- piLINCS, and leadership in LINCS proteomic working group (DCIC/Mike MacCoss, UW)
- Testing of microenvironment microarrays for neuronal differentiation (OHSU LINCS Center)
- Profiling of common conditions in cortical and motor neurons (NeuroLINCS Center)
- Signatures of vascular toxicity (Iris Jaffe/Srila Gopal, Tufts Medical Center)
- Dedicated short course on LINCS PCCSE methods and data (Olga Vitek, NEU, May 2017)
- National and international invited podium presentations to discuss LINCS proteomics efforts
 - ETH Zurich, Targeted Proteomics International Symposium, USHUPO, & more.

08 – LINCS CONSORTIUM MCF10A COMMON PROJECT

LINCS PCCSE

Why MCF10A as a model system?

MCF10A is a non-tumorigenic mammary epithelial cell line

Has few genetic abnormalities

Commonly used to model normal human breast cells

Is amenable to different culture modes

Has a history of use in wide range of research

Drug Name	Mechanism of Action
Alpelisib (BYL719)	Ras/PI3K-P110a inhibitor
Dasatinib	Tyrosine kinase inhibitor
Etoposide	Top2B inhibitor
Neratinib	Tyrosine kinase inhibitor
Palbociclib	CDK4/CDK6 inhibitor
Paclitaxel	Microtubule breakdown inhibitor
Trametinib	MEK1/2 inhibitor
Vorinostat	HDAC inhibitor

Low Density

High Density

Inter-center analysis reveals differences in basic kill curves

Analysis reveals a range of measured GR₅₀

Compound	Concentration
DMSO	0.1pct
Paclitaxel	0.003 µM
Alpelisib	10 µM
Neratinib	0.1 µM
Dasatinib	0.316 μM, 0.1 μM, 0.032 μM
Trametinib	0.01 μM, 0.003 μM, 0.001 μM
Palbociclib	3.16 µM
Etoposide	0.316 µM

Drug concentrations for GCP and P100 assays defined by average of GR₅₀ curves

Drug	Low Conc (µM)	Medium Conc (µM)	High Conc (µM)
Neratinib	0.032	0.1	0.316
Dasatinib	0.1	0.316	1
Palbociclib	0.316	0.999	3.16
Paclitaxel	0.001	0.003	0.01
Trametinib	0.001	0.003	0.01
Alpelisib	1	3.162	10
Etoposide	0.1	0.316	1
Vorinostat	1	3.162	10

 Medium concentration was defined as equal to average GR₅₀ value

Clustering reveals a subset of histone PTMs as markers of cellular stress

Intensity of signature of cellular stress is proportional to drug concentration

- 2

P100 probes show signature of cellular stress proportional to drug concentration

MCF10A common project conclusions

- More stringent protocols need to be developed in order to achieve multi-center data concordance
- The GR₅₀ assay (72 h) can be used to assess cellular stress, however the GCP (24 h) and P100 (3 h) provide a rapid readout of cellular stress far before cellular death actually occurs

- Follow-up MCF10A study will investigate the evolution of the 'Signature of Stress' in P100 assay as a function of time (t=6, 24, 48, 72 h), as opposed to drug concentration
 - Will the same phosphopeptide set prove to be representative of cellular stress?
 - Will different modes of stress be stratified?

09 – MICROENVIRONMENT MICROARRAYS (MEMA) IN NEURONAL DEVELOPMENT

LINCS PCCSE

MEMA plates with arrays of extracellular matrix proteins

NPCs seeded onto spot

		MEMA Substrates		
ALCAM	Integrin αMβ2	E-cadherin Fc Chimera	vitronectin	PECAM1
Cadherin-20 (CAD-20)	Integrin αVβ6	ECM1	Biglycan	Tenascin C
Cadherin-6/KCAD Fc Chimera	Laminin	Fibronectin	Decorin	VCAM1
Cadherin-8 (CAD-8) Fc Chimera	Laminin-5	GAP43	Periostin	Collagen Type V
CD44	Lumican	НуА-500К	SPARC/osteonectin	Collagen XXIII α 1/COL23A1
CEACAM6	M-Cad	НуА-50К	Thrombospondin-1/2	Desmoglein 2
Collagen I	Nidogen-1	ICAM-1	Brevican	Osteopontin
Collagen Type II	Osteoadherin/OSAD	Integrin α 10 β 1	Collagen Type III	P-Cadherin Fc Chimera
			Collagen Type IV	

MEMA applications

- Can we find substrates that will promote neuronal differentiation in high-content hES-derived NPC cultures?
- How do cells respond to chemical perturbations in the presence of ECM?
- Are there substrates that can rescue neurodevelopmental phenotypes that occur upon the sgRNA-mediated knockout of ASD implicated genes?
- Cell painting as an unbiased approach for characterizing cell morphology alterations induced by disease states or perturbations

Can MEMA substrates mediate differentiation?

HUES8-iCas9 NPCs <u>TWO WEEKS</u> of GFW

ASD risk genes affect morphology of developing neurons

- CHD8: chromatin remodeling protein
- Knockdown in the developing brain leads to *abnormal neuronal morphology* and behavior in mice via disruption of Wnt–βcatenin signaling

- TAOK2: Ser/Thr kinase
- Down-regulation or overexpression affects differentiation of cortical pyramidal neurons
- Basal dendrite complexity decreases with knockdown and increases with overexpression via JNK pathway

Durak et al, 2016, Nat Neurosci; de Anda et al, 2012, Nat Neurosci
Cell painting characterizes subcellular structure

Gustafsdottir et al, 2013, PLOS One

Cell painting highlights MEMA substrate-mediated morphologies in hNPCs

Substrate: **PECAM1**

HUES8-iCas9 NPCs 6 weeks of GFW

BROAD Anne Carpenter, Maria Alimova

Future work

- Introduce ECM substrates which encourage healthy neuron morphology to GFW hNPC differentiation protocol
 - Validate via immunohistochemistry for neuron, NPC, and glia markers
- Develop cell painting (Anne Carpenter, Broad) algorithms to generate morphological profiles of genetic and epigenetic cell states

10 – CARDIOVASCULAR MODELS

LINCS PCCSE

Impact of novel anti-cancer agents on the vasculature

	HTN	Angina	MI	Stroke	PAD	Pulm	DVT/PE
Tyrosine kinase inhibitors							
Sorafenib	Х	X	Х	Х			Х
Sunitinib	X	X	Х	Х			Х
Pazopanib	X	X	Х	X			X
Axitinib	X	X	X	X			X
Regorafenib	X	X	Х				
Cabozantinib	X		X	Х			X
Vandetanib	X			Х			
Lenvatinib	X		Х	Х			X
Nilotinib		X	Х	X	X		X
Ponatinib	X	X	Х	X	X		X
Dasatinib						Х	

Joerg Herrmann et al. Circulation. 2016;133:1272-1289

Structure of the blood vessel

Endothelium – smooth inner lining, repels blood cells, secretes vasodilators and vasoconstrictors

Elastic tissue

Smooth muscle- contraction and relaxation of blood vessel

Connective tissue

The endothelial cell: proposed central mediator of vascular toxicity of chemotherapeutics

Gopal S, Miller KB, Jaffe IZ, Clin Sci (Lond). 2016

Hypothesis

- Anti cancer agents cause vascular toxicity by altering signaling and epigenetics in vascular cells.
- Pathways altered in vascular cells are different from those in cancer cells and understanding these mechanisms can help design therapeutic targets to attenuate toxicity while maintaining anti cancer benefits.

Aims

- Determine the chromatin profile and phosphoproteomic profile of primary human vascular cells (human aortic SMCs and ECs) treated with small molecule inhibitors.
- Compare the epigenetic and phosphoproteomic profiles in vascular cells to those already being generated in cancer cell lines (A549 (lung), A375 (skin), PC3 (prostate) and MCF7 (breast) and identify areas of similarities and differences.

Study design

Inhibitor panel used in vascular cell lines

Epigenetic modulators			
Drug	Mechanism		
Vorinostat	HDAC inhibitor		
Decitabine	DNMT inhibitor		
JQ1-S	Bromodomain inhibitor		
GSK126	EZH-2 inhibitor		
UNC-0646	G9a inhibitor		
GSK-J4	Histone demethylase inhibitor		
Resveratrol	SirT1 activator		
Geldanamycin	HSP 90- inhibitor		

Kinase inhibitors		
Drug	Mechanism	
Pazopanib	VEGFR, PDGFR inhibitor	
Nilotinib	BCR-Abl inhibitor	
LY-294002	PI3-K inhibitor	
Okadaic Acid	PP1 and PP2a inhibitor	
Tofacitinib	Jak3 inhibitor	
SP600125	Jnk inhibitor	
Losmapimod	р38 МАРК	
AR A014418	GSK3 inhibitor	
Staurosporine:	Pan kinase inhibitor	

Others	
Drug	Mechanism
Tretnoin	RAR agonist
Tacrolimus	Calcineurin inhibitor
Sirolimus	mTOR inhibitor
Lenalidomide	Immunomodulator
Curcumin	NFKB inhibitor
KN-62	CaMKIIalpha inhibitor
Pravastatin	HMGCoA reductase inhibitor
Rolipram	PDE4 inhibitor

Cardiovascular drugs
Aldosterone
Angiotensin II
Eplerenone
Losartan
Spironolactone
Dexamethasone

Red: used in oncology, no vascular toxicity reported Green: used in oncology, known vascular toxicity Black: other compounds

Chromatin profiles of vascular endothelial cells show distinct signatures

- At baseline, HUVECs have a distinct chromatin profile compared to other cancer cell lines and neuronal cells.
- HUVECs are most similar to SMCs.

Aortic smooth muscle cells generate a unique chromatin signature to vorinostat

 Vorinostat, an HDAC inhibitor has the same signature in all cell types except SMCs.

Lenalidomide specifically increases H3K36 trimethylation in smooth muscle cells

 Lenalidomide is associated with increased venous thrombosis and used in the treatment of myeloma.

Pazopanib develops a multi-modal signature in vascular endothelial cells

Figure 1: The P100 signaling signature of Pazopanib in HUVECs bears hallmarks of staurosporine (*within HUVECs*)

Figure 2: Chromatin signatures exhibit decreased S10 phosphorylation and K18/K23 ubiquitination (*compared across many cell lines*)

Taken together, these data suggest significant cytotoxicity of Pazopanib in HUVECs

Conclusions & future directions

- Anti cancer agents have direct effects on the chromatin profile and signaling pathways in vascular cells.
- Some drugs(vorinostat, lenalidomide, pazopanib) cause distinct effects in vascular cells when compared to cancer cells.
- Hypothesis generated from these assays will be tested in other models to identify critical pathways in vascular cells and identify possible mechanisms of vascular toxicity.
- Identification of critical pathways involved in vascular cells may help in the development of drugs to attenuate vascular effects without mitigating anti cancer effect.

Thank you!

IV: ROUNDTABLES

LINCS PCCSE

LINCS PCCSE publication roadmap

Title/Idea	Key Activities to Complete	Principal Authors	Timeframe
"Data Library" paper of all drug treatments in all cell types / Joint signatures GCP+P100 => crosstalk b/t Epi and Signaling; Signatures that unexpectedly cross P100 to GCP and vice versa; divergence among biological models, especially neural models	Finish making data! Find vignettes that highlight the multi-assay dimensionality of the data	Lev + All	Q1 2017
Universal Network-based Query for Integrating Omics Signatures	Algorithms are there, need some story or showcase	Ryan	6 months
Characterization of Cas9 neurons	Finish making them; demonstrate Cas9 activity; deeper characterization	Fatema, Jennie, Tak, Joel	6 months
Demonstration of DIA data mineability?	Duct taping algorithms into something that people can actually use	Jarrett/Sonia/Brian/Mike/Jako /Sebastian/Ryan	e Start putting together in summer
PECAN - DIA Peptide Centric Search	None	Sonia	Submitted
DIA Overlap Paper	Comparative analysis	Jarrett	
AutoQC Panorama		Vagisha/Brendan/Adam/Josh Eckels	
DIA Superlibrary Constant	Comparative Statistics, expand examples	larratt/Sobactian	
	comparative statistics, expand examples	Jan ell/Sebasilan	
CHORUS as a LINCS Data Repository and Analysis Platform (for DIA, for PRM?) Tutorial? Application Note? => Interactivity with Skyline (including direct interaction)	Lots of software development needed	Mike/Jarrett/Brendan	
Super-next-gen DIA Query algorithm	Proof-of-principle experiments, hardening of code	e Ryan	
MultiOMICS signature data ecosystem		Together with Transcriptomic	S
Look for focused neuro-results in LINCS data for specific follow up in LHT lab			

SAB guidance questions

- What are the key impact opportunity areas for our center going forward? How should we allocate resources?
 - Short term?
 - Longer term?
- How do we catalyze use of the data we have generated by others?
- Are there key areas of focus that have been overlooked? Could these lead to greater engagement with key communities?
- Have we addressed all major mid-course review criteria? Are there major course corrections needed?