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Profiling post-translational modifications represents an
alternative dimension to gene expression data in charac-
terizing cellular processes. Many cellular responses to
drugs are mediated by changes in cellular phosphosignal-
ing. We sought to develop a common platform on which
phosphosignaling responses could be profiled across
thousands of samples, and created a targeted MS assay
that profiles a reduced-representation set of phospho-
peptides that we show to be strong indicators of re-
sponses to chemical perturbagens.

To develop the assay, we investigated the coordinate
regulation of phosphosites in samples derived from three
cell lines treated with 26 different bioactive small mole-
cules. Phosphopeptide analytes were selected from these
discovery studies by clustering and picking 1 to 2 proxy
members from each cluster. A quantitative, targeted par-
allel reaction monitoring assay was developed to directly
measure 96 reduced-representation probes. Sample
processing for proteolytic digestion, protein quantifica-
tion, peptide desalting, and phosphopeptide enrichment
have been fully automated, making possible the simulta-
neous processing of 96 samples in only 3 days, with a
plate phosphopeptide enrichment variance of 12%. This
highly reproducible process allowed �95% of the re-

duced-representation phosphopeptide probes to be de-
tected in �200 samples.

The performance of the assay was evaluated by mea-
suring the probes in new samples generated under treat-
ment conditions from discovery experiments, recapitulating
the observations of deeper experiments using a fraction
of the analytical effort. We measured these probes in new
experiments varying the treatments, cell types, and time-
points to demonstrate generalizability. We demonstrated
that the assay is sensitive to disruptions in common sig-
naling pathways (e.g. MAPK, PI3K/mTOR, and CDK). The
high-throughput, reduced-representation phosphoproteo-
mics assay provides a platform for the comparison of per-
turbations across a range of biological conditions, suitable
for profiling thousands of samples. We believe the assay will
prove highly useful for classification of known and novel
drug and genetic mechanisms through comparison of
phosphoproteomic signatures. Molecular & Cellular Pro-
teomics 15: 10.1074/mcp.M116.058354, 1622–1641, 2016.

Our understanding of disease mechanisms and therapeutic
opportunities is rapidly expanding because of incredible ad-
vances in molecular profiling technologies. Within the last
decade, the broad application of high-throughput transcrip-
tional profiling has resulted in rich sets of gene expression
data collected from biological samples subjected to drug and
genetic perturbations (1, 2). As an example, the ambitious
Connectivity Map (CMap)1 project (http://www.lincscloud.
org/) collects transcriptional profiles from cells perturbed with
biologically active compounds or genetic manipulations and
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enables cross-comparisons of these profiles to help develop
insight into the biological mechanisms at play (3, 4).

High-throughput transcriptional profiling represents a novel
approach to derive functional associations among drugs,
genes, and diseases but only reflects one axis of cellular
information (gene expression). The proteomic axis, and par-
ticularly the post-translational modifications to the proteome,
may provide alternate and complementary information for
discovering these connections. Initial and sustained signals to
environmental changes (such as drug treatment and neomor-
phic disease states) are frequently mediated by changes of
post-translational modifications on proteins. Protein phos-
phorylation in particular is known to be a strong mediator of
cellular signaling (5, 6). Changes in the phosphoproteome can
result in subsequent disruptions in protein-protein interac-
tions (7, 8), alterations in protein stability, changes in cellular
localization of proteins (9, 10), and potentiation of novel tran-
scriptional programs. Importantly, dysregulation of phospho-
signaling is also known to be involved in multiple diseases,
including cancer (11–17). We propose that profiling phospho-
signaling responses to drug treatments and other perturba-
tions can generate cellular signatures that will expose novel
functional connections complementary to gene expression
profiles. Quantitative, mass spectrometry-based proteomics
is one tool of choice for generating these profiles because it
can provide direct observation of these post-translational
events whereas nucleic acid sequence-based techniques
cannot.

The majority of protein kinases are S/T-directed and the
levels of phosphoserine (pS) and phosphothreonine (pT) are
generally higher in abundance than phosphotyrosine (pY)
sites. Although there are �70,000 known pS/pT sites in the
human proteome (8, 18, 19), protein phosphorylation is typi-
cally present at sub-stoichiometric levels. Because of the level
of phosphorylation and its role in many cell signaling pro-
cesses, analytical techniques to enrich for protein phosphor-
ylation have been developed. For example, antibody-based
assays have been developed to study tyrosine phosphoryla-
tion (14, 20, 21), and metal affinity-based methods have been
used to enrich pS, pT, and pY-containing peptides from pro-
teolytic digests of cells and tissues (22, 23). In combination
with highly sensitive mass spectrometry workflows, these en-
richment techniques have facilitated global phosphopro-
teomic studies in many biological systems (24–27).

However, to facilitate modern “omics” analyses and lever-
age techniques pioneered in gene expression studies, it
would be highly desirable to have reproducible observations
of phosphopeptide analytes across large numbers of samples
generated under different conditions. Yet, even with the fast-
est and most sensitive MS instruments currently available, it is
not possible to reproducibly measure all of the same peptides
or modified peptides across multiple experiments using data-
dependent analysis methods. Comparisons across even small
numbers of proteomic experiments are difficult because dif-

ferences in sample processing protocols and mass spectrom-
etry data acquisition methods can cause sampling variation
(28–31). Variations in data production may result in the lack of
phosphosite detection even when the modification is present.
As a result, it is currently not possible to reproducibly and
quantitatively monitor all known phosphosites in a large num-
ber of human phosphoproteome samples.

To overcome these challenges, we considered that phos-
phorylation is mediated by just a few hundred protein kinases
and phosphatases that can modify hundreds of thousands of
amino acid sites on various protein targets. We hypothesized
that the implicit one-to-many relationship of kinases to sub-
strates suggests that there is some redundancy in the cellular
information conveyed by phosphorylation and that collapsing
the number of monitored sites based on their coordinate
activity could provide a core set of highly informative phos-
phopeptide probes. This idea is consistent with work pub-
lished by Alcolea et al., where phosphosignaling events within
acute myeloid leukemia cell lines with different sensitivities to
kinase inhibitors were profiled to reveal several hundred cor-
related phosphorylation sites that were involved in parallel
kinase pathways (32). In addition, a similar strategy was used
to develop the “L1000” reduced-representation transcrip-
tional profiling assay that is the basis for the transcriptional
Connectivity Map project. The L1000 assay retains 80% of
information content at �1% of the cost of microarray or
RNA-Seq-based expression profiling (33).

Monitoring a reduced-representation set of phosphopeptide
probes using a targeted MS approach could be a time- and
cost-effective approach to monitor changes in phosphosignaling
in response to multiple drug and genetic perturbations. Such
an assay could identify connections between molecular per-
turbations and elucidate cell type-specific cell signal trans-
duction using analysis methods similar to those utilized in the
transcriptional profiling field. A similar approach was recently
reported by Picotti and colleagues, who developed a targeted
proteomic assay to probe biological processes in Saccharo-
myces cerevisiae in response to environmental perturbations
by selecting sentinel proteins from existing data (34). Such
targeted approaches could eliminate stochastic sampling ef-
fects and allow for accurate quantification across large sam-
ple sets without significant loss in information content relative
to a full phosphoproteome.

The work described below explores this possibility and
consists of three main sections: (1) a discovery arm where we
identify a high-value set of phosphopeptide probes from tra-
ditional, data-dependent large scale SILAC-based phospho-
proteomic data, (2) a configuration arm where we develop a
targeted, internally standardized phosphopeptide assay that
generates almost complete data (data that contains observa-
tions for all phosphopeptides), and (3) a proof-of-principle arm
where we explore the sensitivity of the assay to diverse per-
turbations and biological systems and demonstrate its gen-
eral utility. In our discovery arm we produced global phos-
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phorylation data representing 156 samples that included 26
chemical perturbations in three different cell lines using con-
ventional phosphopeptide enrichment and MS-based tech-
niques. From these data we selected representative phospho-
sites (and their associated observable peptides) from clusters
of sites that exhibited coordinated regulation across discov-
ery experiments. We then configured a targeted parallel reac-
tion monitoring (PRM) assay against these phosphopeptide
probes using isotopically-labeled synthetic analogs, and in
parallel, developed automated workflows that enabled pro-
teolytic digestion, protein quantification, peptide desalting,
and phosphopeptide enrichment from 96 samples simultane-
ously in anticipation of scaling the assay to generate a large
corpus of data. Our initial evaluation of the configured assay
was to regenerate samples under similar conditions to those
used in our discovery experiments to see if we could recapit-
ulate the previously observed relationships using only the
reduced-representation phosphoproteome at a fraction of the
effort required for deeper phosphoproteomic profiling. Finally,
in our proof-of-principle arm we extended our experimental
conditions to vary the treatments, cell types, and time points
measured with the explicit goal of demonstrating that the
assay could generate phosphoproteomic profiles outside of
the parameters under which it was developed and to demon-
strate that the assay is responsive to disruptions of signaling
pathways of known biological importance.

We call this assay “P100” because it measures �100 phos-
phopeptide probes in a single 60 min assay. This assay is a
phosphosignaling analog of our Global Chromatin Profiling
assay (35, 36) that has already proven to be of great utility. We
believe that the P100 assay will prove highly useful for clas-
sification and stratification of drug and genetic mechanisms
as facilitated through comparison of phosphoproteomic sig-
natures of known chemical and genetic perturbations to those
of novel perturbations or those where mechanistic insight is
currently lacking. Together, these proteomic signature gener-
ation assays can form the basis for proteomic Connectivity
Maps to complement their transcriptional analogs.

EXPERIMENTAL PROCEDURES

Large-Scale, Discovery SILAC Cell Culture—MCF7 cells were cul-
tured in DMEM GlutaMAX medium (Gibco, 10567–014, Waltham, MA)
supplemented with 10% FBS (Sigma, F4135, St. Louis, MO), 1%
penicillin/streptomycin (Gibco, 10378–016), and 0.8% glucose
(Sigma, G8769). PC3 cells were cultured in RPMI medium (Gibco,
11875–093) supplemented with 10% FBS (Sigma, F4135), 1% penicil-
lin/streptomycin (Gibco, 10378–016), 1% HEPES (Gibco, 15630), and
1% sodium pyruvate (Gibco, 11360). HL60 cells were cultured in RPMI
medium (Gibco, 11875) supplemented with 10% FBS (Sigma, F4135),
and 1% penicillin/streptomycin (Gibco, 10378–016). Either normal L-ly-
sine (K0) and L-arginine (R0) or heavy-labeled 13C6-15N2 lysine (K8) and
13C6-15N4arginine (R10) were supplemented at concentrations of 40
mg/L and 120 mg/L, respectively, for SILAC cell culture.

Assay Validation Cell Culture—MCF7 cells were cultured in DMEM
GlutaMAX medium (Gibco, 10567–014) supplemented with 10% FBS
(Sigma, F4135), 1% penicillin/streptomycin (Gibco, 10378–016), and
0.8% glucose (Sigma, G8769). PC3 cells were cultured in RPMI

medium (Gibco, 11875–093) supplemented with 10% FBS (Sigma,
F4135), 1% penicillin/streptomycin (Gibco, 10378–016), 1% HEPES
(Gibco, 15630), and 1% sodium pyruvate (Gibco, 11360). HL60 cells
were cultured in RPMI medium (Gibco, 11875) supplemented with
10% FBS (Sigma, F4135), and 1% penicillin/streptomycin (Gibco,
10378–016). Lines were propagated according to standard tissue-
culture practices.

Drug Treatment and Harvest—The following applies to discovery,
configuration, and confirmation experiments. Compounds were ob-
tained from Sigma (St. Louis, MO) or EMD Millipore (Darmstadt,
Germany), with the exception of JQ-1 which was the generous gift of Dr.
James Bradner (Dana-Farber Cancer Institute, Boston, MA). Once cells
reached �95% confluence, they were treated with the compounds
listed in Table I and supplemental Table S1 for 6 h at 37 °C. After 6 h,
the cells were washed twice with cold PBS (Gibco, 10010–023) and
harvested by scraping. Cells were pelleted at 1000 � g for 2 min. The
supernatant was then removed, and the cell pellet was frozen in liquid
nitrogen until cell lysis and phosphopeptide enrichment.

For discovery experiments, we used three-state SILAC labeling to
determine quantification of phosphoproteomic changes. In these ex-
periments, we held the “light” channel constant as DMSO and varied
the drugs in the medium and heavy channels (as schematically de-
picted in Fig. 1C and listed in Table I). For each drug/cell type
combination, two complete biological repeats (grown several weeks
apart) were performed. Ratios were determined using MaxQuant (see
below) of treatment versus DMSO for each drug. The entirety of the
discovery data set, including a table that specifies SILAC labeling
states for each of the 26 drug combinations, can be found in ftp://
MSV000079524@massive.ucsd.edu. This data set has been depos-
ited in MassIVE with accession ftp://MSV000079524@massive.
ucsd.edu.

For all other experiments, cells were grown in typical growth me-
dium without metabolic labeling of proteins. Instead, the synthetic
versions of the P100 assay peptides (probes) are used to derive
quantitative information.

Time-course Drug Treatment and Harvest—Compounds were ob-
tained from Sigma or EMD Millipore (Darmstadt, Germany). Once cells
reached �95% confluence, they were treated with the compounds in
supplemental Table S5 for either 3, 6, or 24 h at 37 °C. After 3, 6, or
24 h, the cells were washed twice with cold PBS (Gibco, 10010–023),
lysed in plate in urea buffer (8 M urea; 75 mM NaCl, 50 mM Tris HCl pH
8.0, 1 mM EDTA, 2 �g/ml aprotinin (Sigma, A6103), 10 �g/ml leupeptin
(Roche, #11017101001, Basel, Switzerland), 1 mM PMSF (Sigma,
78830), 10 mM NaF, Phosphatase Inhibitor Mixture 2 (1:100, Sigma,
P5726), Phosphatase Inhibitor Mixture 3 (1:100, Sigma, P0044), and
harvested by scraping. Cells were lysed for 30 min at 4 °C and then
frozen at �80 °C. Prior to phosphopeptide enrichment, cell lysates
were clarified by centrifugation at 15,000 � g for 15 min.

Embryonic Stem Cell and Neural Progenitor Cell Culture and Treat-
ment—Individual colonies of H9 human embryonic stem cells (ESCs)
were cultured with mouse embryonic fibroblast-conditioned media
(MEF-CM; provided by Sanford-Burhnam Research Institute, La Jolla,
CA) in matrigel (BD, 356231)-coated plates. For neural progenitor cell
(NPC) induction, ESC cell colonies of 60–80% confluence were in-
cubated in MEF-CM containing each 5 �M of dorsomorphin (Sigma,
P5499), A83–01 (Sigma, SML0788) and PNU 74654 (Sigma, P0052).
Once NPC cells and reached �95% confluence, they were treated
with the compounds listed in Supplemental Table S2 for 24 h at 37 °C.
H9 cells or NPCs were harvested by washing twice with cold PBS
(Gibco, 10010–023) and centrifugation at 1000 � g for 2 min. The
supernatant was removed, and the cell pellets were frozen in liquid
nitrogen until cell lysis and phosphopeptide enrichment.

Manual Sample Processing—
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Reduction, Alkylation, and Digestion—Frozen cell pellets were
lysed for 30 min at 4 °C in urea buffer (8 M urea; 75 mM NaCl, 50 mM

Tris HCl pH 8.0, 1 mM EDTA, 2 �g/ml aprotinin (Sigma, A6103), 10
�g/ml leupeptin (Roche, #11017101001), 1 mM PMSF (Sigma, 78830),
10 mM NaF, Phosphatase Inhibitor Mixture 2 (1:100, Sigma, P5726),
Phosphatase Inhibitor Mixture 3 (1:100, Sigma, P0044). Lysates were
centrifuged at 20,000 � g for 10 min, and protein concentrations of
the clarified lysates were measured via 660 protein assay (Pierce,
22660). Five hundred micrograms of protein was reduced for 45 min
with 5 mM dithiothreitol (DTT) and alkylated for 45 min with 10 mM

iodoacetamide (IAA). Samples were diluted to 2 M urea with 50 mM

Tris HCl, pH 8 (1:4 dilution). Lysates were digested overnight at room
temperature with trypsin in a 1:50 enzyme-to-substrate ratio (Pro-
mega, V511X, Madison, WI) on a shaker. Digestion was stopped by
bringing the samples to a final concentration of 0.5% TFA. Acidified
samples were loaded onto a 100 mg capacity C18 SepPak (Waters,
Milford, MA) for desalting. Samples were eluted using 50% ACN/
0.1% formic acid and vacuum concentrated to dryness (37).

Discovery Phosphopeptide Enrichment—Phosphopeptide enrich-
ment was completed using Phos-Select Iron Affinity gel (Sigma,
P9740) that were prepared by washing four times with 40% acetoni-
trile/0.1% formic acid. Prior to enrichment, peptides were reconsti-
tuted in 40% acetonitrile/0.1% formic acid. Phosphorylated peptides
were enriched for with 15 �l IMAC beads for each sample for 30 min.
Phosphopeptide enrichment was completed as previously described
(23). After enrichment, Phos-Select gel was loaded on Empore C18
silica-packed stage tips (3M, 2315, St. Paul, MN) and desalted (38).
Briefly, StageTips were equilibrated with 2 � 100 �l washes of meth-
anol, 2 � 50 �l washes of 50% acetonitrile/0.1% formic acid, and 2 �
100 �l washes of 1% formic acid. Samples were then loaded onto
stage tips and washed twice with 50 �l of 80% acetonitrile/0.1%
trifluoroacetic acid and 100 �l of 1% formic acid. Phosphorylated
peptides were eluted from IMAC beads with 3 � 70 �l washes of 500
mM dibasic sodium phosphate, pH 7.0, and washed twice with 100 �l
of 1% formic acid before being eluted from stage tips with 100 �l
50% acetonitrile/0.1% formic acid. All washes were performed on a
tabletop centrifuge at a maximum speed of 3,500 � g.

Automated Sample Processing—
Reduction, Alkylation, and Digestion—Frozen cell pellets were

lysed for 30 min at 4 °C in lysis urea buffer (8 M urea; 75 mM NaCl, 50
mM Tris HCl pH 8.0, 1 mM EDTA, 2 �g/ml aprotinin (Sigma, A6103), 10
�g/ml leupeptin (Roche, #11017101001), 1 mM PMSF (Sigma, 78830),
10 mM NaF, Phosphatase Inhibitor Mixture 2 (1:100, Sigma, P5726),
Phosphatase Inhibitor Mixture 3 (1:100, Sigma, P0044). Lysates were
centrifuged at 20,000 � g for 10 min, and protein concentrations of
the clarified lysates were measured via A660 protein assay (Pierce,
22660). 500 �g of protein was transferred to a Bravo robotic liquid
handling platform (Agilent) for reduction in 100 mM DTT, alkylation in
200 mM IAA, dilution to 2 M urea in 50 mM Tris (pH 8.0), and digestion
with 0.5 �g/�l (1:50) sequencing-grade modified trypsin (Promega) in
400�l volumes per sample at 37 °C overnight. Digestion was stopped
by bringing the samples to a final concentration of 0.5% TFA (see
Supplemental Protocol 1). Acidified samples were loaded onto a 25
mg capacity C18 SepPak in a 96-well plate format (Waters) for de-
salting. Samples were eluted using 50% ACN/0.1% formic acid and
vacuum concentrated to dryness.

Phosphopeptide Enrichment—Desalted samples were reconsti-
tuted in 80% ACN/0.1% TFA that contained isotopically labeled
standards for enrichment quality control and moved to an AssayMAP
Bravo robotic system (Agilent, Santa Clara, CA). AssayMAP car-
tridges containing Ni-NTA-agarose packing material (Qiagen,
1018611) were washed with water, stripped with 100 mM EDTA, and
loaded with 100 mM FeCl3. Fe-NTA cartridges were primed with 1:1:1
ACN/methanol/0.01% acetic acid, and samples were loaded at 5

�l/min. Flow-throughs were re-loaded onto cartridges at a flowrate of 2
�l/min. Cartridges were washed with 80% ACN/0.1% TFA, and pep-
tides were eluted with 500 mM K2HPO4 (pH7) at 5 �l/min. Eluates were
vacuum concentrated to dryness, and subsequently desalted using
AssayMAP RP-S cartridges according to the manufacturer’s instruc-
tions. A detailed protocol is shown as Supplemental Protocol 2.

Automated Sample Processing (Time-Course Experiment Only)—
Reduction, Alkylation, and Digestion—Cells were lysed for 30 min

at 4 °C in lysis urea buffer (8 M urea; 75 mM NaCl, 50 mM Tris HCl pH
8.0, 1 mM EDTA, 2 �g/ml aprotinin (Sigma, A6103), 10 �g/ml leupeptin
(Roche, #11017101001), 1 mM PMSF (Sigma, 78830), 10 mM NaF,
Phosphatase Inhibitor Mixture 2 (1:100, Sigma, P5726), Phosphatase
Inhibitor Mixture 3 (1:100, Sigma, P0044). Lysates were centrifuged at
15,000 � g for 15 min, and protein concentrations of the clarified
lysates were measured via 660 protein assay (Pierce, 22660). Five
hundred micrograms of protein was transferred to a Bravo robotic
liquid handling platform (Agilent) for reduction in 100 mM DTT, alky-
lation in 200 mM IAA, dilution to 2 M urea in 50 mM Tris (pH 8.0), and
digestion with 0.5 �g/�l (1:50) sequencing-grade modified trypsin
(Promega) in 400�l volumes per sample at 37 °C overnight. Digestion
was stopped by bringing the samples to a final concentration of 0.5%
TFA (see supplemental Protocol S1). Acidified samples were loaded
onto a 25 mg capacity C18 SepPak in a 96-well plate format (Waters)
for desalting. Samples were eluted using 50% ACN/0.1% trifluoro-
acetic acid and vacuum concentrated to dryness.

Phosphopeptide Enrichment—Desalted samples were reconsti-
tuted in 80% ACN/0.1% TFA that contained isotopically labeled
standards for enrichment quality control and moved to an AssayMAP
Bravo robotic system (Agilent). Agilent AssayMAP Fe-(III)-NTA car-
tridges (note that we changed the enrichment media from the previ-
ous experiment) were washed with water, stripped with 100 mM

EDTA, and loaded with 100 mM FeCl3. Fe-(III)-NTA cartridges were
primed with 1:1:1 ACN/methanol/0.01% acetic acid, samples were
loaded at 20 �l/min and flow-throughs were re-loaded onto cartridges
eight additional times. Cartridges were washed with 80% ACN/0.1%
TFA, and peptides were eluted with 500 mM K2HPO4 (pH7) at 5
�l/min. Eluates were vacuum concentrated to dryness, and subse-
quently desalted using AssayMAP RP-S cartridges according to the
manufacturer’s instructions. A detailed protocol is shown in supple-
mental Protocol S3: Optimized Automated Phosphopeptide Enrich-
ment SOP using Agilent NTA-polymeric resin.

Discovery Mass Spectrometry—Each sample was subjected to 3
consecutive LCMS analyses with the following rationale. First, data
were acquired using a typical data-dependent top 12 method (pa-
rameters below). These data were searched using MaxQuant version
1.2.2.5 (see below). A second round of acquisition was performed
using tailored exclusion lists (AMEx (30)) for each sample to minimize
re-acquisition of the same precursors in consecutive analyses. Again,
these data were searched in MaxQuant. When the first two rounds of
acquisition and search were complete, we determined peptides (and
their corresponding precursor m/z and retention times) that had been
identified in a majority of the samples but lacked quantitative infor-
mation in some samples. We rationalized that targeted MS/MS ac-
quisition for these peptides would lead to a more complete data
matrix for analysis. Therefore, we created individual precursors lists
for each sample to “fill in the blanks” consistent with the principles of
AIMS (39) data acquisition.

All three acquisition strategies employed the same LC separation
conditions described below. Samples were chromatographically sep-
arated using a Proxeon Easy NanoLC 1000 (Thermo Scientific) fitted
with a PicoFrit (New Objective, Woburn, MA) 75-�m inner diameter
capillary with a 10 �m emitter tip was packed under pressure to �20
cm with C18 Reprosil beads (1.9 �m particle size, 200 Å pore size, Dr.
Maisch GmBH) and heated at 50 °C during separation. Samples were
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loaded in 4 �l 3% ACN/1% formic acid and peptides were eluted with
a linear gradient from 7–30% of Buffer B (0.1% FA and 90% ACN)
over 82 min, 30–90% Buffer B over 6 min and then held at 90% Buffer
B for 15 min at 200 nL/min (Buffer A, 0.1% FA and 3% ACN).

During data-dependent acquisition, eluted peptides were intro-
duced into a Q-Exactive mass spectrometer (Thermo Scientific) via
nanoelectrospray (2.15 kV). A full-scan MS was acquired at a resolu-
tion of 70,000 from 300 to 1800 m/z (AGC target 1e6, 5ms Max IT).
Each full scan was followed by top 12 MS2 scans at a resolution
17,500 (Isolation width 2.5 m/z, ACG Target 5e4, 120 ms Max IT).

For AMEx (30) runs, individual exclusion lists were added and the
match tolerance was set as the software default. Dynamic exclusion
was set at 20 s.

For AIMS (37) runs, individual inclusion lists were added and the
match tolerance was set as the software default. If fewer than 12
inclusion list targets were active, then the balance of MS/MS scans
were selected from next most intense precursors subject to dynamic
exclusion (20 s).

Targeted Mass Spectrometry—
Targeted LCMS Data Acquisition—Samples were chromatograph-

ically separated using the same conditions as the Discovery Mass
Spectrometry with the following changes. Samples were reconsti-
tuted in 10 �l 3% ACN/5% formic acid containing isotopically labeled
versions of all phosphopeptide probes. Peptides were eluted using a
shorter linear gradient from 3–40% of Buffer B over 45 min, 40–90%
Buffer B over 5 min and then held at 90% Buffer B for 10 min at 200
nL/min.

Eluted peptides were introduced into a Q-Exactive mass spectrom-
eter (Thermo Scientific) via nanoelectrospray (2.15 kV). A full-scan MS
was acquired at a resolution of 35,000 from 300 to 1800 m/z (AGC
target 3e6, 50 ms Max IT). Each full scan was followed by fully
scheduled, targeted HCD MS/MS scans at resolution 17,500 (Isola-
tion width 2 m/z, ACG Target 2e5, 50 ms Max IT). Each peptide
species was subjected to targeting MS/MS for 3–5 min depending on
the empirical chromatographic properties, centered on the average
observed retention time of two scheduling runs containing synthetic
versions of a subset of isotopically labeled phosphopeptide probes.

For the time-course experiments, eluted peptides were introduced
into a Q-Exactive Plus mass spectrometer (Thermo Scientific) with the
same parameters described above with the following exceptions:
full-scan MS was acquired at 35,000 from 300 to 1200 m/z (AGC
target 3e6, 20 ms Max IT) and HCD MS/MS scans at 17,500 (Isolation
width 1.7 m/z with 0.3 m/z offset, AGC target 2e5, 50 ms Max IT).

The raw mass spectrometry data have been deposited in the
public proteomics repository MassIVE and are accessible at ftp://
MSV000079524@massive.ucsd.edu. Skyline files corresponding to
the targeted analyses can be accessed at: https://panoramaweb.
org/labkey/project/LINCS/AbelinSupplemental/begin.view?.

MaxQuant Data Analysis—Raw MS Data were searched with Max-
Quant version 1.2.2.5 against the Uniprot Human Protein Database
(Complete Isoforms, download date 20-MAR-2012) containing 81489
entries. Three-state SILAC was specified: Arg0:Lys0, Arg6:Lys4, and
Arg10:Lys8, and the following modifications were allowed: Carbam-
idomethylation of C (fixed); Oxidation of M, Phosphorylation of S, T,
and Y, Acetylation of N termini (variable). The mass tolerances al-
lowed were 7 ppm for MS precursors and 20 ppm for MS/MS frag-
ments. Peptide, protein, and site FDRs were 0.01 as calculated using
by MaxQuant. H/L and M/L ratios were extracted for phosphosites,
and log2-transformed. All MaxQuant tables, including parameters,
can be found in ftp://MSV000079524@massive.ucsd.edu. Phospho-
sites that were observed in at least 75% of all experiments were
retained. If a data point was missing for a particular phosphosite in a
given condition, we imputed its value by random sampling of a normal
distribution based on the mean and standard deviation of all other

measurements of that phosphosite in other conditions (6.9% of val-
ues were imputed). Subsequently, variance was measured for each
phosphosite, and sites with the lowest 15% of variance across all
experiments were discarded as uninformative. The final yield of sites
used for subsequent calculations and selections was �1000.

We performed hierarchical clustering of phosphosite ratios us-
ing GENE-E (http://www.broadinstitute.org/cancer/software/GENE-E/
index.html), clustering both samples and sites using a distance metric
of 1-Pearson’s correlation. Principal Component Analysis of these
data was performed using R. After reducing the data to 55 distinct
clusters, representative phosphopeptides were selected from each
cluster using an in-house Perl-script that combed through MaxQuant
data tables, ranking each by heuristic rules designed to maximize
success in automated proteomic workflows and data analysis (i.e.
easy site localization, high re-observability, absence of missed tryptic
cleavages, etc.). The peptides that were ultimately selected can be
found in supplemental Table S3.

Skyline Data Analysis—
Data Analysis—Files were imported into a Skyline-daily (40) with

pre-selected charge states for all reduced-representation phospho-
peptide probes (Supplemental Skyline Document 1) and for the qual-
ity control internal standard phosphopeptide probes (Supplemental
Skyline Document 2). Transitions were chosen on the basis of selec-
tivity for phosphosite localization and detectability. Each sample and
phosphopeptide probe was manually validated using the criteria of
retention-time agreement with other samples and the co-eluting pres-
ence of all transitions with corresponding isotopically labeled stand-
ards. Heavy/light ratios were extracted on the basis of transition area
integration using Skyline defaults. Data for each modification were
normalized by the median of all samples before clustering. Clustering
was performed in GENE-E (http://www.broadinstitute.org/cancer/
software/GENE-E/index.html) using unsupervised hierarchical meth-
ods with the following methods: Pearson correlation, row and column
clustering.

Computation and Visualization of Connectivity Maps—All possible
intersample Pearson correlation coefficients were calculated using
P100 profiles. A “sample group” was defined for each set of replicates
for a given compound in a given cell type. An intergroup connectivity
was assigned as the average correlation between all replicates in one
group to another group. As an example, let us assign Group A as the
three replicates of digoxin in MCF7 cells and Group B as the 3
replicates of lanatoside C in PC3 cells. It would follow that the
intergroup connectivity between Group A and Group B is the average
of the nine correlation coefficients possible between replicates of
these groups.

Cytoscape (41) was used to visualize sample groups and the
computed intergroup connectivity. Node arrangements were com-
puted using preset spring-embedded and/or force-directed layouts
options, using the intergroup correlations as the weights. Edge thick-
ness is directly proportional to the intergroup connectivity.

RESULTS

We set out to develop a rapid and robust targeted pro-
teomic assay that could generate molecular signatures based
on the phosphorylation state of cellular proteins. An overview
of this process is presented in Fig 1 A. We first identified small
molecules that were predicted to modulate phosphorylation in
pleiotropic (but non-uniform) ways. We then treated multiple
cell types with these compounds and collected large-scale
global phosphorylation data. We rationalized that, because a
small number of kinases and phosphatases (�1000) seem-
ingly modulate a large number of phosphosites (�100,000),
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many sites were likely to be coordinately regulated. Thus,
traditional “deep” phosphoprofiling may convey redundant
information when the levels of two or more sites are modu-
lated similarly across a wide number of perturbations. We
hypothesized that a smaller set of sites could serve as surro-
gate markers for a larger set. From our global phosphorylation
data, we were able to identify groups of phosphosites that
behaved similarly upon drug treatment, from which we se-
lected highly-observable representative phosphopeptides.
We then configured a reduced-representation targeted MS
assay for these phosphopeptide probes (“P100”). We exe-
cuted the P100 assay in new samples under similar treatment
conditions used in our discovery experiments to confirm that
the assay was functional. We also performed the P100 assay
on samples from two new cell types and several additional
compounds that were not used for assay configuration to
further demonstrate the functionality of the assay under di-
verse conditions. Finally, we compared phosphosignaling
profiles collected from cells treated with compounds of
known mechanisms in a time-course experiment to demon-
strate that the assay is sensitive to disruptions in multiple
common signaling pathways, including MAPK, PI3K/mTOR,
and CDK cell cycle. These experiments also allowed us to
analyze the time-dependence of emergence of phosphosig-
natures. Overall, we established a data generation platform
that enables the production of large-scale, phosphosignaling
signatures that can be used to stratify drugs and other per-
turbations into classes and to compare known reference
drugs to novel compounds, helping to further elucidate their
mechanisms.

Discovery Experiments—To find small molecules with pleio-
tropic effects on phosphosignaling, we analyzed gene expres-
sion data in the Connectivity Map (CMap, https://www.broad
institute.org/cmap/) for compound treatments that positively
and/or negatively regulated the expression of groups of ki-
nase and phosphatase genes. The hypothesis was that, if a
set of kinases’ expression is modulated, then the phospho-
sites that they regulate should be coordinately modulated as
well. We avoided highly specific, single kinase inhibitors, as
such compounds would not be likely to generate the desired
pleiotropic effects on the phosphoproteome.

At the time of our analyses, the CMap data set consisted of
Affymetrix array data for �700 samples across cell lines rep-
resenting 4 lineages: breast cancer (with both regular and
serum stripped growth conditions), skin cancer, prostate can-
cer, and leukemia, where each sample is the collapsed gene
expression profile (derived from �6000 individual profiles, or
8–9 profiles/sample) of a compound treatment in a particular
cell type. We began by extracting all Affymetrix probes cor-
responding to genes annotated as kinases or phosphatases (a
total of 317 probes). We then clustered these data in the
sample dimension, such that cell/compound treatment com-
binations with similar kinase/phosphatase gene expression
profiles segregated together (Fig. 1B). We scored each cluster
for the number of genes positively or negatively regulated.
Examples of high scoring clusters are indicated by arrows
along the top in Fig. 1B. Representative compounds were
selected from high-scoring clusters, with an emphasis on
diversity of the compounds (indicated by tick marks in the
track below the running average in Fig 1B). In some cases we
selected several structural analogs of a compound family to
compare their effects on cells. Ultimately, we selected 26
compounds (including 1 broad spectrum kinase inhibitor and
1 broad spectrum phosphatase inhibitor; Table I) that we

FIG. 1. Large-scale transcriptional and phosphoproteomic profiling data for identification reduced-representation phosphopro-
teome probes. A, A schematic depicting the development of the P100 assay. Drug treatments that modulated phosphorylation in pleiotropic
ways were selected, and large-scale global phosphorylation data were collected from multiple cell types treated with these drugs. Repre-
sentative phosphopeptide probes were identified from these data and used to configure the P100 assay. Confirmation and proof-of-principle
of the P100 assay’s functionality were demonstrated via classification and stratification of samples from multiple biological contexts.
Associations among samples were then identified using P100 data. B, Affymetrix gene expression levels corresponding to genes annotated
as kinases or phosphatases were extracted from the CMap database and clustered (dendrograms omitted for clarity). Combinations of
cell/compound treatments with similar kinase/phosphatase gene expression profiles are illustrated and groups with similar profiles are
summarized by the “Running Average” graphic above. Arrows indicate strongly coordinated groups of samples. C, A workflow for the
large-scale discovery experiments is depicted. Cells were grown in SILAC medium, lysed, digested, fractionated, and analyzed using high
resolution UPLC-MS. D, A clustered heatmap representing the 1,200 commonly observed phosphosites that were present in �75% of all MS
experiments is displayed. Groups of phosphosites with coordinate activity are clustered together along the vertical axis, whereas samples are
clustered along the horizontal axis (dendrograms omitted for clarity). Data underlying the figure are available in Supplemental Data Set 1.

TABLE I
Compounds and concentrations used for discovery experiments

Compound
Treatment

concentration
(�M)

Compound
Treatment

concentration
(�M)

Captopril 17.2 Mesalazine 26.2
Ambroxol 9.6 Anisomycin 15
Paclitaxel 1 Digitoxigenin 10.6
Carmustine 100 Digoxigenin 10.2
Fulvestrant 1 Digoxin 5.2
Clindamycin 8.6 Lanatoside C 4
Chlortetracycline 7.8 Irinotecan 100
Chlorzoxazone 23.6 Scriptaid 10
Doxorubicin 6.8 Trichostatin A 1
Daunorubicin 7 MS-275 10
GW-8510 10 Valproic acid 1000
Staurosporine 1 H-7 100
Dexverapamil 10 Geldanamycin 1
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deemed to be strong candidates for general modulation of
kinase and phosphatase genes across a range of cell types.

Next, we measured the cellular phosphoproteome after
perturbation by these 26 different compound treatments
(compared with DMSO control) across three cell lines (MCF7,
PC3, and HL60) in biological duplicate, for a total of 156
experiments (scheme in Fig. 1C). The amalgamated data set
quantified more than 10,000 unique phosphosites. Impor-
tantly, we found over 1200 sites that were quantified in �75%
of all experiments. Using only these 1200 sites, we imputed
missing values as described above, and low variance phos-
phosites were discarded as uninformative (bottom 15%). To
better visualize the data set, we performed hierarchical clus-
tering of both the conditions (x axis) and the detected phos-
phosites (y axis) (Fig. 1D).

We analyzed the discovery data set with an eye toward
finding reproducible responses (signatures) of drug treat-
ments coordinately exhibited by multiple phosphosites

for single or related conditions (ftp://MSV000079524@
massive.ucsd.edu). If such signatures and coordinated
groups could be found, we could then select representative or
“proxy” phosphopeptide marker(s) and thereby formulate a
condensed phosphoproteomic assay. Selected regions of the
heatmap from Fig. 1D are shown in Fig. 2 to illustrate these
concepts. We show a unified response to paclitaxel treatment
across all three cell lines studied in Fig. 2A, with up-regulation
of several phosphosites across a diverse set of proteins. Note
that all 6 biological replicates of paclitaxel treatment cluster
together in the heatmap regardless of the cell line being
studied (MCF7, PC3, or HL60). We call this a lineage-inde-
pendent signature, and it is notable as these cell lines are of
diverse origin (including a hematological line that grows in
suspension, HL60). Although many other phosphosites also
contribute to these treatments clustering together, these par-
ticular sites (shown in Fig. 2A) are a major driver of the
clustering.

cl
in

da
m

yc
in

ca
pt

op
ril

fu
lv

es
tra

nt
pa

cl
ita

xe
l

pa
cl

ita
xe

l
pa

cl
ita

xe
l

pa
cl

ita
xe

l
pa

cl
ita

xe
l

pa
cl

ita
xe

l
ca

rm
us

tin
e

ca
rm

us
tin

e
ch

lo
rz

ox
az

on
e

SLC35C2 S364
LIG3 S913
GTBP S830
NPM S254
ADE2 S27
MAPK1IP1L S15
DDX48 S12
MKI67 S1071
DBX S594
HCA90 S774
CASP11 S802
HMGA1 T42
ADAR S534
CDC20 T70
TP53BP1 S1683
H2AFY T129
ORC2 T226
CAT53 S313
CCDC86 S69
EPLIN S491

H
-7

H
-7

da
un

or
ub

ic
in

da
un

or
ub

ic
in

da
un

or
ub

ic
in

di
gi

to
xi

ge
ni

n
di

go
xi

ge
ni

n
di

go
xi

n
di

gi
to

xi
ge

ni
n

an
is

om
yc

in
an

is
om

yc
in

an
is

om
yc

in
an

is
om

yc
in

di
gi

to
xi

ge
ni

n
di

go
xi

n
di

go
xi

ge
ni

n
La

na
to

si
de

-C
di

gi
to

xi
ge

ni
n

di
go

xi
ge

ni
n

G
W

-8
51

0
iri

no
te

ca
n

do
xo

ru
bi

ci
n

do
xo

ru
bi

ci
n

da
un

or
ub

ic
in

RICTOR S1302
EIF4B S406
ABH5 S361
ADD1 S757
MARCKSL1 S104
MBS T696
MAP3K7 S439
MARCKSL1 S93
LLGL3 S759
IMPD2 S416
KIAA0310 S1191
CDK16 S217
ARHGAP34 S823
KIF4 S801
CDT2 S485
MPD S96
MAP4K5 S335
KLC S521
ARHGEF2 S886
SZRD1 S19
ULK1 S556
ADSL S9
PAK2 S2
CDK2 Y15
CDC2 Y15
BET1L S9

HSPC099 S928
CLIP1 S195
HSPC216 S335
MATR3 S188
ELMSAN1 S461
HSD14 S18
HSP27 S82
AHNAK S93
KAP1 S473
ACIN1 S561
CBP80 T21
CBP80 S22
HSPC099 S1099
ACIN1 S710
HNRNPU S26
CLTA S105
HSP27 S15
DIDO1 S1456
HSP27 S78
BAF180 S39
AHNAK S5110
CCDC131 S352

tri
ch

os
ta

tin
-A

sc
rip

ta
id

sc
rip

ta
id

tri
ch

os
ta

tin
-A

M
S

-2
75

M
S

-2
75

da
un

or
ub

ic
in

do
xo

ru
bi

ci
n

G
W

-8
51

0
di

gi
to

xi
ge

ni
n

di
go

xi
ge

ni
n

an
is

om
yc

in
an

is
om

yc
in

iri
no

te
ca

n
an

is
om

yc
in

ca
rm

us
tin

e
ch

lo
rz

ox
az

on
e

ca
rm

us
tin

e
m

es
al

am
in

e
pa

cl
ita

xe
l

m
es

al
am

in
e

am
br

ox
ol

va
lp

ro
ic

-a
ci

d
di

go
xi

ge
ni

n
ge

ld
an

am
yc

in
va

lp
ro

ic
-a

ci
d

m
es

al
am

in
e

ca
rm

us
tin

e
La

na
to

si
de

-C
di

go
xi

ge
ni

n
G

W
-8

51
0

sc
rip

ta
id

va
lp

ro
ic

-a
ci

d
G

W
-8

51
0

iri
no

te
ca

n
G

W
-8

51
0

iri
no

te
ca

n
iri

no
te

ca
n

an
is

om
yc

in
di

go
xi

n
di

gi
to

xi
ge

ni
n

di
go

xi
ge

ni
n

di
gi

to
xi

ge
ni

n
di

go
xi

n
La

na
to

si
de

-C
ca

rm
us

tin
e

do
xo

ru
bi

ci
n

ca
rm

us
tin

e
iri

no
te

ca
n

iri
no

te
ca

n
di

go
xi

ge
ni

n
do

xo
ru

bi
ci

n
di

gi
to

xi
ge

ni
n

da
un

or
ub

ic
in

di
go

xi
n

di
gi

to
xi

ge
ni

n
di

go
xi

n
La

na
to

si
de

-C
La

na
to

si
de

-C
fu

lv
es

tra
nt

da
un

or
ub

ic
in

an
is

om
yc

in
an

is
om

yc
in

G
W

-8
51

0
G

W
-8

51
0

H
-7

H
-7

CHC1 S11
HDAC2 S394
HDAC1 S393
CHET9 S583
BM28 S120
IDN3 S2658
SIN3A S1112
TOP2B S1581

H
-7

H
-7

da
un

or
ub

ic
in

da
un

or
ub

ic
in

da
un

or
ub

ic
in

di
gi

to
xi

ge
ni

n
di

go
xi

ge
ni

n
di

go
xi

n
di

gi
to

xi
ge

ni
n

an
is

om
yc

in
an

is
om

yc
in

an
is

om
yc

in
an

is
om

yc
in

di
gi

to
xi

ge
ni

n
di

go
xi

n
di

go
xi

ge
ni

n
La

na
to

si
de

-C
di

gi
to

xi
ge

ni
n

di
go

xi
ge

ni
n

G
W

-8
51

0
iri

no
te

ca
n

do
xo

ru
bi

ci
n

do
xo

ru
bi

ci
n

da
un

or
ub

ic
in

BA C.

D. E

z-score

-3 3

HL60 MCF7 PC3

Cell line Cell line Cell line

Cell line

. .

.

FIG. 2. Diverse compound treatments produce unique phosphosignatures in discovery data. Selected regions of the large-scale discovery
heatmap (Fig. 1D) are shown. A, Phosphosignatures of paclitaxel-treated cells cluster together regardless of cell line (MCF7, PC3, or HL60), and
an up-regulation of several phosphosites across a diverse set of proteins is shown. Both lineage-independent (B) and lineage-specific signatures
(C) across a set of cardiac glycoside structural analogs (digoxin, digoxigenin, digitoxigenin, and lanatoside (C) are shown. D, A cluster of
phosphosites that appear to be coordinately regulated across a diverse set of conditions. The parent genes of these sites have a strong bias toward
chromatin function. E, A tight network of protein-protein interactions in which 7 of the 8 parent genes in the chromatin binding cluster participate.
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We demonstrate both lineage-independent and lineage-
specific signatures across a set of structural analogs in Fig.
2B and 2C. Digoxin, commonly known as Digitalis, is a
cardiac glycoside widely used in the treatment of various
cardiovascular conditions (42). Its structural analogs digoxi-
genin, digitoxigenin, and lanatoside C are reported to have
similar bioactivity. Nearly all biological replicates of these
compounds cluster together across the MCF7 and PC3 cell
lines and elicit a common up-regulation of a series of phos-
phosites (Fig. 2B). Interestingly, the antibiotic protein syn-
thesis inhibitor anisomycin also clusters together with the
cardiac glycosides, although this observation is of unknown
significance. In parallel, we can also detect a lineage-spe-
cific down-regulation of a series of sites that only seems to
occur in MCF7 cells (Fig. 2C). These examples show that
phosphoproteomic signatures are potentially useful in rec-
ognizing common mechanisms of actions of related com-
pounds yet retain enough information to differentiate sub-
tleties in cellular response.

Although we believe that these phosphoproteomic signa-
tures are generalizable and are useful on their own, the deri-
vation of specific biological information from these data is
also desirable. We noticed an interesting cluster of phospho-
sites in the data set that seemed to be coordinately regulated
across a diverse number of conditions (Fig. 2D). By “coordi-
nately regulated,” we mean that the group of sites went up or
down as a group in response to different treatment contexts
and across multiple cell types. We immediately recognized
that the parent genes of the sites shown in Fig. 2D seemed to
have a strong bias toward chromatin function, and this was
borne out by performing a functional enrichment test against
the Gene Ontology categories which showed that the parent
genes were enriched for Chromatin Binding (GO:0003682)
with an FDR-adjusted p value of 7 � 10�3 when compared
with all parent genes in the data set. We further learned that
seven of the eight parent genes in the cluster are known to
participate in protein-protein interactions in a tight network
(Fig. 2E) in the STRING database (43). This observation raises
the intriguing possibility of direct regulation of the chromatin
machinery by phosphosignaling in a coordinated manner.
Although there are likely numerous other biological insights to
be gained from deeper analysis of the discovery data set, this
was beyond the scope the present study, the aim of which
was to develop an efficient phosphosignaling panel for wider
deployment.

Reducing Representation and Configuring the P100 As-
say—We employed a reductionist approach to collapse the
large universe of phosphosites that could be monitored into a
relatively small number of detectable surrogate targets, re-
ferred to as the reduced representation set. This innovation
will allow retention of important signaling information at a
fraction of the effort normally associated with deep phospho-
proteomic profiling. This idea draws inspiration from the
L1000 assay developed for the Library of Integrated Network-

based Cellular Signatures (LINCS) at Broad Institute that re-
duces the number of transcripts needed for monitoring global
expression profiling. LINCS efforts have resulted in a 1000-
plex Luminex-based gene expression assay that retains 80%
of information content at �1% of the cost of microarray or
RNA-Seq-based expression profiling. A similar proteomic ap-
proach has recently been illustrated by Soste et al., in the
context of signaling in yeast (34).

We began by performing hierarchical clustering on our high
quality phosphoproteomic data as depicted in Fig. 1D and
Fig. 2. Using principal component analysis, we estimated that
it would take at least �40–50 components to explain 80% of
the total variance in the data set. We therefore made simple
linear models and measured the sum-squared-error of these
models versus a partial hold-out of the data (cross-validation)
for increasing numbers of components above 40. We found a
local minimum in the error at 55 components and therefore
went on to set thresholds on our hierarchical clustering data
that divided the phosphosites into 55 different components.
We note that this achieves approximately the same degree of
compression (1200 sites to 55 sites, or �20 fold) of the L1000
gene expression assay (20,000 genes to 1000 genes). Lastly,
we selected 2 phosphopeptide probes from each of the 55
clusters for a total of 110 phosphopeptides (the “P100
probes”). These probes were chosen using heuristic rules
designed to maximize mass spectrometric ease of observa-
tion (i.e. minimize missed tryptic cleavages, bias toward min-
imal phosphosite localization possibilities, etc.).

Building on the work above, we developed a high resolu-
tion, accurate mass targeted assay to identify and quantify
�100 highly informative and representative phosphopeptides
across multiple cell types treated with various drugs. Several
of our initial 110 probes peptide probes could not be suc-
cessfully configured into the targeted assay for various rea-
sons (i.e. failed peptide synthesis, poor peptide stability, un-
acceptable MS performance, etc.), resulting in a final panel of
96 phosphopeptide probes in supplemental Table S3. An
analysis of the peptides that we selected (using PhosphoMotif
Finder) suggests quite a diversity of possible kinase sub-
strates, with 27 unique known motifs spanning a range of
kinases (including CDKs, GSK3, PKA, and PKC) among our 96
probes (44) (supplemental Table S4).

Anticipating deploying this assay at a large scale, we auto-
mated the sample processing protocol as depicted in Fig. 3A.
After a manual cell lysis step, the automated sample process-
ing protocol encompassed protein quantification (using a col-
orimetric assay), protein digestion, IMAC phosphopeptide en-
richment, and sample desalting using Agilent Bravo liquid
handling and AssayMAP platforms. Automation facilitated the
simultaneous processing of 96 samples in only 3 days, with a
plate phosphopeptide enrichment variance of 12% as deter-
mined using stable-isotope-labeled internal standards (sup-
plemental Fig. S1). This highly reproducible process allowed
�95% detection of the reduced-representation phosphopep-
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tides in close to 200 samples. Detailed protocols for the
automated portions of the method are provided in supple-
mental Protocols S1, S2, and S3. We were able to generate
phosphosignaling profiles in under 2 weeks from the time of
cell harvest to processed results using this assay by directly

measuring the reduced-representation set of phosphopep-
tides across multiple cell lineages and perturbations.

The top signaling pathways from the KEGG database (45)
represented by the 1200 phosphopeptides that were used to
generate the reduced-representation phosphopeptide probe
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Day 2 Day 3Day 1

UPLC-HCD
    MS/MS
  Analysis

    IMAC
Enrichment

Cell 
Lysis

Protein
 Assay

Dilution
Peptide
 Desalt

Peptide
 Desalt

  Protein
Digestion

 PKGVEGF Notch

PIC3K
  AKT

Insulin

HIF-1
TGF-β

Wnt

GnRH

  T Cell 
Receptor

Oxytocin

MAPK
cAMP

Ras

AMPK

mTOR

ErbB Thyroid 
hormone

Neurotrophin

 Signaling Pathways RepresentedB.

PEAK DETECTIONLCMS SUMMARIZATION CONSENSUS RELATIONSHIPS

100

Skyline software-
mediated peak

integration

LCMS from
96-well plates

Collapse replicates
to consensus

signatures

Compute correlation
across entire signature

data set

100
a n i s o m y c i n c a rm u s n e c h l o r t e t ra c y c d a u n o ru b i c i n d i g i t o x i g e n in d i g o x i g e n in d i g o x i n

N A N S _ C L 0 1 0 . 4 8 0 . 1 4 0 . 1 5 - 0 . 0 8 0 . 8 8 0 . 8 4 0 . 4 5

A H N A K _ C L 0 1 - 0 . 7 9 - 0 . 5 6 - 0 . 5 6 - 0 . 8 3 0 . 4 3 0 . 4 8 - 0 . 1 4

D D X 5 4 _ C L 0 2 - 0 . 9 4 0 . 3 4 0 . 6 2 - 0 . 0 1 0 . 4 4 0 . 4 5 - 0 . 0 4

H S P C 2 1 6 _ C L 0 2 0 . 5 3 0 . 1 1 0 . 4 2 - 0 . 0 9 0 . 7 8 0 . 7 2 0 . 5 1

P F K F _ C L 0 3 0 . 7 6 0 . 4 7 0 . 3 4 0 .3 6 0 . 9 0 0 . 6 2 0 . 4 2

TM S L 3 _ C L 0 3 0 . 3 6 0 . 1 2 - 0 . 3 1 0 .9 7 0 . 6 9 0 . 2 9 0 . 7 3

TM S L 3 _ C L 0 3 0 . 3 6 0 . 2 5 - 0 . 0 2 0 .6 0 0 . 7 1 0 . 4 7 0 . 1 1

A D 0 2 9 _ C L 0 4 0 . 2 2 0 . 0 4 0 . 2 6 0 .0 3 0 . 8 0 0 . 6 3 0 . 2 9

C D C 2 _ C L 0 4 - 0 . 4 3 0 . 0 5 0 . 2 0 - 0 . 3 7 1 . 0 2 0 . 6 3 0 . 4 4

A T A D 2 _ C L 0 5 - 0 . 0 9 0 . 6 6 0 . 8 5 0 .0 9 0 . 6 9 0 . 5 6 - 0 . 0 2

B A T 2 D 1 _ C L 0 5 - 1 . 2 7 1 . 9 6 2 . 7 2 0 .0 3 0 . 1 7 0 . 2 6 - 0 . 0 3

A G S 1 _ C L 0 6 0 . 3 2 0 . 4 6 0 . 7 3 0 .2 1 0 . 6 2 0 . 6 1 0 . 3 7

A 2 D _ C L 0 7 - 0 . 7 9 1 . 0 5 1 . 7 1 0 .2 1 0 . 3 9 0 . 1 6 - 0 . 0 2

Z N F 6 7 2 _ C L 0 7 - 0 . 5 8 - 0 . 4 4 - 0 . 1 5 - 0 . 6 1 0 . 1 2 0 . 1 1 0 . 1 2

A B I1 _ C L 0 8 0 . 2 3 0 . 0 3 0 . 0 2 - 0 . 0 2 0 . 5 1 0 . 5 6 0 . 0 5

F O S L 2 _ C L 0 8 - 1 . 3 0 - 0 . 1 1 0 . 1 4 - 1 . 2 3 - 0 . 4 1 - 0 . 3 7 - 1 . 3 2

F O S L 2 _ C L 0 8 - 0 . 2 8 0 . 5 3 0 . 7 0 - 0 . 2 7 0 . 1 0 0 . 3 3 - 0 . 0 6

C 1 7 o r f 8 5 _ C L 0 9 - 0 . 0 4 0 . 1 1 0 . 2 9 - 0 . 1 7 0 . 7 1 0 . 6 6 0 . 2 0

E P L IN _ C L 0 9 0 . 2 8 - 0 . 0 7 0 . 1 1 - 0 . 0 6 0 . 8 1 0 . 6 6 0 . 2 9

B A F 1 5 5 _ C L 1 0 0 . 3 7 0 . 5 3 0 . 9 4 0 .3 3 0 . 4 6 1 . 0 1 0 . 4 5

F U B P 2 _ C L 1 0 0 . 4 1 0 . 2 9 0 . 1 9 - 0 . 1 0 0 . 9 8 0 . 6 8 0 . 5 1

M A P 3 K 2 _ C L 1 1 1 . 2 7 1 . 2 7 1 . 7 9 1 .3 3 1 . 3 1 1 . 3 0 0 . 9 4

F A S _ C L 1 2 0 . 7 6 0 . 4 5 0 . 2 9 0 .5 7 0 . 7 2 0 . 9 0 0 . 5 0

F A S _ C L 1 2 0 . 4 6 0 . 1 0 - 0 . 1 3 0 .1 2 0 . 5 1 0 . 5 4 - 0 . 1 6

A R M 2 _ C L 1 3 0 . 8 5 0 . 5 1 0 . 1 6 0 .5 6 0 . 8 0 0 . 7 1 0 . 1 6

C 9 o r f 8 8 _ C L 1 4 1 . 7 0 0 . 7 5 - 0 . 1 9 - 0 . 4 8 0 . 9 3 0 . 6 1 0 . 4 1

Combination and
reporting of data

QC + NORM

Probe and sample
outlier removal,
normalization

C.

FIG. 3. P100 automated sample processing, pathway coverage, and data analysis pipeline. A, A schematic of automated P100 sample
processing. On the first day, cells are lysed, subjected to protein quantification and diluted to a uniform concentration. Proteins are then reduced,
alkylated, and digested. On the second day, samples are desalted using a 96-well device and dried overnight. On the third day, phosphopeptide
enrichment by IMAC and desalting occurs. Finally, samples are analyzed using high resolution UPLC-HCD MS/MS. B, The top signaling pathways
represented by the larger set of phosphopeptides used to identify the reduced-representation phosphopeptide probe set are shown. Each signaling
pathway is depicted as a circle that is sized to indicate the number of source proteins involved in a specific pathway. A larger size indicates that
a signaling pathway is represented by a larger number of phosphopeptides. The color of each pathway is only meant to show the diversity of the
signaling pathways represented. C, The data analysis pipeline for the P100 assay is shown. Data are collected in a 96-well plate format, analyzed
within Skyline, and exported for summarization. Phosphopeptide probes and sample outliers are removed and the light/heavy peptide ratios are
normalized. Quality controlled data are hierarchically clustered and molecular signatures for different perturbations are revealed.
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set are shown in (Fig. 3B). The abbreviations for each signal-
ing pathway are shown on a circle that is sized to indicate the
number of source proteins involved in a specific pathway that
are present in the set of 1200 phosphopeptides. A larger size
indicates that a signaling pathway is represented by a larger
number of phosphopeptides. The edges of the signaling net-
work in Fig. 3B represent source proteins that are shared
among different signaling pathways, and thicker lines indicate
a higher number of source proteins are shared between two
pathways. We believe that these pathways should be covered
in the targeted assay by proxy through the reduced-represen-
tation set, and indeed demonstrate this for several of them
(see results and discussion of Fig. 7 below). All targeted P100
phosphoproteomics data are analyzed using Skyline (40), and
subsequent data reduction, QC, and visualizations are
achieved through a series of R-scripts to facilitate reproduc-
ible research. These R-scripts are automatically executed
upon uploading of P100 Skyline data documents into our
Panorama server (https://panoramaweb.org/labkey/LINCS.
url). A schematic illustrating the final P100 data analysis pipe-
line is presented in Fig. 3C.

P100 Assay Confirmation and Proof-of-Principle—To con-
firm that the P100 assay could produce molecular signatures
of comparable utility to those from larger scale phosphopro-
teomic data, we replicated a subset of the perturbational
conditions from our discovery experiments (supplemental Ta-
ble S1 and supplemental Data Set S2). We illustrate the re-
sults of these experiments in Fig. 4. Fig. 4A presents an
overview of the entire data set, where all of the samples are
clustered by their P100 signatures (columns) and all of the
P100 probes are also clustered (rows). The value in each cell
is the ratio of the endogenous (light) version of the peptide to
the internal standard (heavy) version, after row-based normal-
ization and Z-score transformation. Therefore, the value is
equivalent to the number of standard deviations away from
the mean a given phosphopeptide is in a sample relative to all
other samples. Importantly, very few missing values are pres-
ent in this data set (they appear as gray cells when present).
After data QC and filtering, we were able to derive acceptable
measurements from 141 of 144 possible samples while re-
taining sufficient data quality from 92 of the 96 P100 probes.
Samples were rejected if less than 80% of the probes were
observed, and probes were rejected if they were present in
less than 90% of samples. It should be noted that a missing
value does not indicate that we failed to detect the peptide via
its internal standard, but rather that the endogenous level was
too low to detect. For the future, we could either assign these
values as zeros or use another technique to substitute a
suitable value.

We isolated regions of this heatmap from Fig. 4A, shown as
cyan and green boxes, to draw attention to how samples
treated with similar compounds clustered together. In general,
we observed that biological replicates and structurally related
compounds clustered closely together in the assay. For ex-

ample, phosphosignaling profiles that arose from digoxigenin,
digitoxigenin, digoxin, and lanatoside C treatments all clus-
tered together in the assay (cyan box). We also observed that
phosphoprofiles of the same treatments clustered across cell
lineages, while retaining some lineage-specific determinants,
as shown in the green box for GW8510 treatments. We pres-
ent an alternative visualization of these results in https://
panoramaweb.org/labkey/project/LINCS/AbelinSupplemental/
begin.view?, with accompanying text in supplemental Meth-
ods and Results 1. We think that this alternative “connectivity
map” view allows intuitive insight into biological results.

A summary of the pairwise correlation comparisons among
non-self (a sample of one cell type treated with one com-
pound compared with other cell line and treatment combina-
tions), the same drug treatments across cell lines, and the
same drug treatment within each cell line are presented in Fig.
4B. In the left panel, the distribution of non-self pairwise
Pearson correlations among phosphoprofiles is plotted. If a
sufficient number of samples are profiled, and the phospho-
signaling signatures obtained are not systematically biased in
some way, one would expect that comparison of any two
random samples (through their signatures) would not yield a
strong correlation. Thus, the distribution of pairwise correla-
tions of all samples should be approximately normal and
centered on zero. Indeed, we observe such a distribution of
non-self pairwise correlations as expected, which demon-
strates that the assay is not systematically biased. Intrigu-
ingly, the long tail at the right of the distribution shows some
samples do demonstrate strong correlations despite being
treated with different compounds. Based on the observations
from Fig. 4A, these strong correlations likely occur among
class members or structural analogs. This suggests that the
P100 profiles may be useful in classifying and stratifying novel
compounds and perturbations.

The middle panel of Fig. 4B shows the correlations among
the phosphoprofiles produced from the same drug treatment
across differing cell types, characterizing the lineage-inde-
pendent response in the assay. If a drug treatment impacts
cell signaling pathways similarly across cell types, the distri-
bution of pairwise correlations should shift toward a positive
correlation. The distribution of pairwise correlations between
the same drug treatments across different cell lines does shift
toward 1 indicating that the same drug has similar effects on
phosphosignaling across cell types. However, the majority of
the pairwise correlations reside between 0 and 0.5, demon-
strating that, although detectable, lineage-independent re-
sponses to the same drug probably only represent a portion
of the signatures obtained through P100.

In the right panel of Fig. 4B, the pairwise correlations
among the phosphoprofiles of the same drug treatment within
each cell line (biological replicates) are displayed. The distri-
bution of pairwise correlations now shifts even more toward a
positive correlation demonstrating the reproducibility of the
entire P100 assay process across different drug treatments.
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The strong rightward shift toward 1 demonstrates excellent
“replicate recall,” meaning that biological replicates are likely
to be strongly correlated. Taken together, the middle and
bottom panels suggest that there is a strong lineage-specific
component to signaling responses in cells although some
commonality persists at a lineage-independent level.

To further explore the performance characteristics of the
assay, we performed a dose response experiment with stau-
rosporine. A heatmap illustrating the molecular signatures

from a subset of P100 probes is shown in Fig. 5A. Although
staurosporine is generally annotated as a broad-spectrum
kinase inhibitor, we observed examples of phosphopeptide
probes whose levels decrease and others that unexpectedly
increase in response with increasing staurosporine dose (Fig.
5A–5C). The fact that we observe a diversity in the responses
of probes, where some follow the expected behavior whereas
others demonstrate unique behaviors, suggests that we have
selected analytes that have informative, dynamic responses
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FIG. 4. Reduced-representation P100 data recapitulates large-scale discovery data. P100 reduced representation validation data set. A, A
heatmap of P100 phosphoprofiles produced from samples generated under the same conditions as the initial large-scale phosphoproteomic
experiments. Many of the same sample associations observed in large-scale data can be seen using the reduced-representation P100 assay. Cyan
box: Biological replicates and structurally related compounds clustered closely together, as shown for digoxigenin, digitoxigenin, digoxin, and
lanatoside C treatments. Green box: Phosphoprofiles of GW8510 treatments cluster across cell lines, while retaining some cell line-specific
responses. B, A summary of the pairwise correlations between non-self (a sample of one cell type treated with one compound compared with all
other cell line and treatment combinations), the same drug treatment across cell lines (all biological replicates of the same drug compared in two
different cell lines), and the same drug treatment within each cell line are shown (all biological replicates of the same drug compared in a single cell line).
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under a wide variety of cellular conditions, making them ex-
cellent proxies for the signaling state of the cell in general.
Furthermore, unsupervised hierarchical clustering almost per-
fectly organized the doses in order of increasing concentra-
tion in both MCF7 and PC3 cells with both the decreasing
cluster (Fig. 5B) and the increasing cluster (Fig. 5C) making
contributions. This suggests that the strength of P100 signa-
tures (overall deviation from unchanged) may be proportional
to dose and will be useful for determining dose responses,
IC50 values, and other concentration-dependent phenotypic
phenomena that project into phosphosignaling.

To confirm that the P100 assay could retain utility in bio-
logical systems beyond those used for development, we con-
ducted a study using cell lines and perturbations that were not
used during assay configuration. We selected human embry-

onic stem cells (ESC) and derived neuronal precursor cells
(NPC) from them as these represent extremely active areas of
research in developmental biology. We chose to treat the
ESCs and NPCs with compounds known to affect levels of
chromatin modifications because epigenetic regulation has
been shown to be important for both maintenance of and exit
from pluripotency (46). Moreover, mutations in some epige-
netic modifier genes have been identified as genetic risk
factors associated with autism spectrum disorders and other
neurodevelopmental etiologies (47). The drug classes repre-
sented in this study include a BRD4 inhibitor, an EZH2 inhib-
itor, and HDAC inhibitors. The P100 phosphosignaling profiles
generated from epigenetically active drug-treated ESCs and
NPCs are shown in Fig. 6 (see also https://panoramaweb.org/
labkey/project/LINCS/AbelinSupplemental/begin.view?). As we
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FIG. 5. Signature strength in the P100 assay is dose responsive. A, A heatmap illustrating a condensed signature derived from a subset
of P100 probes as a result of treating cells (MCF7, PC3) with varying doses of the kinase inhibitor staurosporine (0.5–20 mM) is shown.
Examples of phosphopeptide probes that decrease in response to increased staurosporine dose (cluster 1 and profile (B) and probes that
increase in response to increasing dose (cluster 2 and profile (C) are observed.
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observed in our first P100 confirmation experiment, biological
replicates of compound treatments generally cluster together.
With the BRD4-inhibitor JQ1, we observe that sample profiles

cluster together across both cell types while retaining lineage-
specific determinants. We also observed general co-cluster-
ing of HDAC inhibitors, although lineage-specific responses
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FIG. 6. P100 generates molecular
signatures in embryonic stem cells
(ESC) and neuronal precursor cells
(NPC) in response to multiple com-
pound treatments. The heatmap illus-
trates phosphosignaling signatures in
ESC and NPC when treated with differ-
ent classes of epigenetically active
drugs including a Brd4 inhibitor, an
EZH2 inhibitor, and HDAC inhibitors. As
observed in the P100 validation experi-
ments, replicates of the same drug treat-
ment cluster together within each cell
type. Additionally, molecular signatures
of the same treatment cluster across
NPC and ES, as seen with the Brd4 in-
hibitor JQ1. Neither cell type nor any
drug treatment (with the exception of
MS-275) depicted above was used in the
development of the P100 assay.
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seem to indicate that the signaling consequences of admin-
istering these compounds may vary widely in differing cell
types. Notably, the structurally similar SAHA and MS-275
HDAC inhibitors developed visibly distinct signatures in the
space of phosphosignaling despite having ostensibly the
same target (in contrast, we have shown that their chromatin
modification signatures are largely the same using our chro-
matin profiling assay (35); data not shown). Remarkably, we
show that these epigenetically active compounds develop
distinct lineage-specific signatures in the space of phospho-
signaling, lending further evidence to the notion that there
may be direct linkages between the chromatin and signaling
machinery in cells, as earlier suggested by the observations in
Fig. 2D–2E. Moreover, these observations were garnered us-
ing the reduced-representation assay in a biological context
that was not considered during its design. Even so, we were
able stratify samples and demonstrate good replicate recall,
indicating that the P100 assay can be applied to diverse
perturbations in multiple cell types, further validating its gen-
eral utility.

As a final proof-of-principle, we designed an experiment to
demonstrate that the P100 assay is responsive to perturba-
tions of known biological pathways. We selected a panel of
small molecules that were known to inhibit members of
MAPK, PI3K/mTOR, and Cell Cycle signaling pathways. The
mapping of the compounds onto the enzymes that they in-
hibit, along with a partial pathway reconstruction (as assem-
bled from KEGG (45, 48)), is shown in Fig. 7A. Additionally,
this experiment was designed to measure the time-depend-
ence of P100 signature evolution, and we collected samples
after 3, 6, and 24 h of compound treatment. We carried out
these experiments in the breast cancer line MCF7, which has
the notable characteristics being Her2�, ER�, and PR�/�; and
also bears helical region PIK3CA mutations, increased phos-
phorylation of AKT, and overall hyperploidy up to 4n (49, 50).

The P100 molecular profiles derived from these experi-
ments are shown in Fig. 7B (data are available in https://
panoramaweb.org/labkey/project/LINCS/AbelinSupplemental/
begin.view?). The profiles are ordered according to the linear
pathway reconstruction, and within each major column, all of
the replicates at each time point are shown (increasing in time
from left to right). It is visually apparent from these profiles that
the different compound treatments generated a diverse set of
molecular responses in the P100 assay. We also saw that
most of the drug perturbations have only modest effects with
increasing time of treatment, with the greatest effects gener-
ally observed at the 24 h time point but clearly observable at
the 3 h time point. This is reminiscent of the effect observed
with increasing doses of staurosporine (Fig. 5), and thus P100
signatures are both dose- and time-responsive. There a few
exceptions, however. The upstream inhibitors Pazopanib
(PDGFR) and TG101348 (JAK2) seem to have dramatic alter-
ations to their profiles at 24 h. As well, the CDK4/6 inhibitor
PD-0332991 only manifests a strong signature after 24 h of

administration, at which time its signature appears largely like
the other CDK inhibitors tested. Interestingly, PD-0332991
(now called Palbociclib) was developed as a specific treat-
ment for Her2�, ER� breast cancer, matching the genetic
status of MCF7 (50). We also note that, despite the cytotox-
icity of many of these compounds after 24 h, unique signa-
tures persist for the different drugs. In other words, the pro-
files do not converge to a universal “signature of death” at the
24 h time point and diverse signaling mechanisms still seem
to be at play.

We noticed that, serendipitously, signatures derived from
compound treatments that were immediately proximal with
respect to their projections onto the reconstructed pathway
seemed to be visually similar at most time points. To further
investigate this observation, we calculated all of the pairwise
correlations of samples at each time point (i.e. all 3 h samples
compared with other 3 h samples, 6 h with 6 h, etc.), and then
calculated the mean correlation for all compound pairs. The
resulting correlation matrix is shown in Fig. 7C. Several inter-
esting features emerged from this analysis. First, the strong-
est average correlations are on the diagonal, which again
demonstrates the good replicate recall of the assay. Second,
however, we noticed that there were blocks of off-diagonal
correlation that appeared to be immediately adjacent to the
diagonal. In fact, when we attempted to draw boundaries
around these blocks of off-diagonal correlation (lavender,
green, and yellow polygons), we noticed that they almost
perfectly corresponded to the pathway modularity that we had
assembled from the KEGG database. This is not to say that all
of the perturbations within the same pathway module gener-
ate the same signature in the P100 assay. However, the
correlation matrix suggests that near-neighbors in the path-
ways share components of the same phosphosignaling re-
sponse, even with our reduced-representation of the phos-
phoproteome, thus allowing us to reassemble some notion of
pathway modularity from the P100 data alone.

DISCUSSION

Our goal was to develop a framework for a high-throughput,
standardized proteomic assay that could be used to interro-
gate the effects of molecular perturbations on cell signaling
across large sample sets generated under disparate condi-
tions. In general, most proteomic investigations of cellular
responses to drugs involve shotgun data acquisition(26, 28–
30, 39). Shotgun proteomics enables the identification of
thousands of proteins in complex samples, but large-scale
comparisons across disparate conditions are difficult and
yield incomplete data sets. In addition, discovery experiments
that implement shotgun phosphoproteomic strategies are
typically slow and labor intensive.

In order to generate almost “complete” data with few miss-
ing values, we configured a targeted proteomic assay for a set
phosphopeptide probes that provides a reduced but highly
informative representation of the phosphoproteome. We iden-
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tified these probes from large-scale, discovery cell perturba-
tion studies and optimized the assay for robustness under
several biologically relevant paradigms (i.e. multiple cell types,
dose response, time-series). We hope that targeted methods
for phosphoproteomic investigations, such as our P100 as-
say, will enable more rapid data generation and will increase
the throughput of MS-based phosphosignaling studies at a
fraction of the effort of traditional discovery experiments.

The P100 assay enables investigations into how perturba-
tions affect cellular phosphosignaling phenotypes through

generation of standardized profiles that can be compared
across many conditions. Perturbations may take several
forms, such as small molecule treatment, genetic manipula-
tion, and induction of disease or differentiation models. In the
most basic sense, the assay can help to stratify compounds
into classes based on mechanism of action while denoting
cell-type specific responses. For example, we identified
strong connectivity among cardiac glycosides across multiple
cell types using P100 data but are able to recognize cell-type
of origin of each of the samples. Importantly, we can compare
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FIG. 7. Time-resolved signatures from P100 reveal modularity of biologically important signaling pathways. A, Pathway reconstruction
showing the targets of a set of drugs known to inhibit important nodes in key signaling pathways. These drugs were administered for 3, 6, and
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profiles obtained from any mode of perturbation to one an-
other, and perhaps generate hypotheses about specific ge-
netic mechanisms through which small molecules are acting
(by similarity of profiles), or potential therapeutic options
could counter a disease state (by anti-correlation of profiles).
Thus, the assay espouses the “Connectivity Map” principle of
using molecular profiles as an abstract means of associating
cellular phenotypes (3, 4).

In alignment with our view of the P100 assay as a second-
ary screening tool, the robustness and throughput of the
assay were enhanced by automating sample processing
steps (Fig. 3A). We developed automated protocols for pro-
tein reduction, alkylation, digestion, phosphopeptide enrich-
ment, and sample desalting using Agilent Bravo liquid han-
dling and AssayMAP platforms. We also introduced important
process monitoring controls, such as enrichment standards,
to monitor for peptide losses and systematic errors that are
crucial to a production effort. We even demonstrated that we
could simultaneous process 96 samples in only 3 days with a
plate enrichment CV of 12% and detect �95% of the re-
duced-representation phosphopeptides in close to 200 sam-
ples using our isotopically labeled quality control standards
(supplemental Fig. S1). The assay itself is a single injection
LCMS experiment with a 60 min nominal run time, enabling
significant annual throughput to generate large data sets.

We qualified the targeted P100 assay and the use of a
reduced-representation phosphoproteome by comparing
measurements of our limited probe set to deeper data ac-
quired under the conditions used for our large-scale discovery
experiments (Fig. 4A). Using these data, we were able to
replicate sample correlations observed in our discovery ex-
periments demonstrating that a smaller set of phosphopep-
tide probes can be used as surrogates for a larger phospho-
peptide set. These connections are intuitively visualized using
a network graph architecture (supplemental Fig. S2) that effi-
ciently summarizes sample correlations and helps to evaluate
the biological relevance of results. Above and beyond these
re-observations, we systematically evaluated the perfor-
mance of the assay statistically. We calculated compared
pairwise correlations among treatments and cell lines (Fig. 4B)
and demonstrated that the null background is in line with
expectations while replicate treatment can be detected both
within a single cell type and even across cell types.

We went on to show that the strengths of the profiles in the
assay have dose- and time-dependent correlations (Figs. 5,
7). Demonstration of dose-responsiveness is important for
judging relative efficacies of similar compounds and down-
stream efforts in lead optimization for compounds in devel-
opment. Time-responsiveness also demonstrates that there is
sufficient dynamic range in the assay to study processes as
they evolve, and that cellular responses to drug treatments
are sustained over time. Although we could distinguish treat-
ment time (via profile strength) via the P100 profiles, we saw
very few instances of radical dynamic shifts in the profiles

among the 3, 6, and 24 h time points that we measured. These
observations argue against wholesale changes in protein lev-
els over the assay time course. We acknowledge the short-
coming of not measuring the related “nonphospho” form of
the P100 probes, but this turned out to be extremely difficult
because of the complexity of the “nonphospho” proteome
given that we wanted to keep the assay to a single LCMS
experiment. In any case, the overall amount of phosphoryla-
tion of a given site is still fit-for-purpose as a component of the
signature as we define it, despite it reflecting both the site-
specific changes and the overall protein abundance. We do
not claim that the assay represents site stoichiometry.

Further analysis of the time course experiments shows that
signatures are largely established by 3 h, and that the strong-
est correlations occur between the 3 and 6 h time points. We
therefore believe that this “assay window” is the ideal time to
measure phosphosignaling responses, before processes like
global changes in gene- or protein-expression have a chance
to exert strong effects on the signatures in the assay. We
extended the assay window to 24 h to see if secondary effects
would dominate the signatures. Surprisingly, most signatures
simply increased in strength rather than changed in major
ways (with exceptions, discussed in results), despite cytotox-
icity of some compounds. When we measured signatures of
epigenetically active compounds in ESCs and NPCs (further
discussed below), we chose to do so at 24 h with the idea of
generating the strongest possible signatures in cell types that
we had not yet tested. At the same time, we acknowledge that
some of these data may not be ideal because some molecular
perturbations, such as treatment with the kinase inhibitor
staurosporine, can result in the death of some cell types after
24 h. Therefore, we only presented those data as an illustra-
tion of our ability to collect P100 phosphosignaling profiles in
diverse cell types that include NPC and ESC.

We believe that the P100 assay will be widely applicable in
many areas of biology. We demonstrated that the assay was
responsive in diverse biological backgrounds by collecting
data from new cell types treated with compounds not used
during the assay configuration phase. We were able to mea-
sure P100 phosphosignaling profiles in both embryonic stem
cells (ESC) and neuronal precursor cells (NPC) in response to
different classes of epigenetically active drugs, including a
BRD4 inhibitor, an EZH2 inhibitor, and HDAC inhibitors (Fig.
6). As with our cancer cell line validation experiments, biological
replicates of drug treatments clustered together by their P100
molecular signatures across NPCs and ESCs. Our ability to
generate molecular signatures using P100 data for drug treated
ESCs and NPCs illustrates the potential for the P100 assay to
be applied in a broad range of cells and perturbation conditions.
We also demonstrated that compounds with epigenetic mech-
anisms of action can elicit cell signaling phenotypes, suggesting
that monitoring phosphosites is important for many biological
contexts. Furthermore, the phosphosignaling profiles we gen-
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erated from ESCs and NPCs may provide insight into neuronal
lineage development and neuropsychiatric disorders.

Our use of reduced-representation phosphopeptide probes
is similar to the use of “sentinel proteins” reported by Soste
et al. of the Picotti laboratory. Picotti and colleagues devel-
oped a targeted proteomic assay to probe biological re-
sponses to environmental perturbations in a less complex
biological system, Saccharomyces cerevisiae, by selecting
sentinel proteins from existing data (34). Like Soste et al., we
selected probes that were highly detectable in our discovery
data set. However, we selected probes to specifically monitor
signaling through the lens of protein phosphorylation,
whereas Soste et al. selected a mix of probes for general
protein abundance and phosphoproteins, thus requiring two
separate mass spectrometry experiments and biochemical
workflows to execute the assay.

Although we selected a specific set of phosphopeptide
probes to monitor with the P100 assay, the concept of re-
duced-representation phosphoprofiling can be extended to
different sets of probes as long as they can be reproducibly
detected and have varying responses to molecular perturba-
tions. Extending reduced-representation profiling to alternate
probes or adding more peptides enables researchers to tailor
their assays to investigate specific biological questions, while
retaining the ability to reproducibly measure targets across
large sample sets. However, tailoring the panel may reduce the
general utility of the assay. It is important to note that the
selection of the P100 reduced-representation set was com-
pletely data driven, without preconceived notions of cellular
pathways or biological function. This may seem counterintuitive;
as high value is typically placed on readouts of “known path-
ways.” Here, we challenge that notion by demonstrating that
many phosphosites with poorly understood or unknown “func-
tions” provide a great deal of information, in the entropic sense,
about the state of the cellular response to perturbations that
helps to classify responses to drug perturbations. In that way,
the P100 is complementary to readouts of “known pathways”
and may help to define novel networks of cellular signaling.

Nevertheless, the discovery data used to configure the
P100 assay contained a wide selection of phosphoproteins
that belong to known pathways. Thus, it can be argued that
the P100 assay “projects” into these pathways by the proxy,
because the selected probes have correlations to the under-
lying discovery data. The top 20 pathways described by our
coordinately regulated P100 groups are shown in Fig. 3B.
Many of these cell signaling pathways have been implicated in
disease etiology and are of interest to both biologist and
clinicians. For example, dysregulation within the MAPK sig-
naling pathway has been implicated in Alzheimer’s disease,
Parkinson’s disease, amyotrophic lateral sclerosis, and mul-
tiple types of cancer (51, 52). The AMPK pathway controls
metabolic functions within cells, and has been linked to obe-
sity, cardiovascular disease, neurogenesis and stroke (53–55).
In addition, inefficient ErbB signaling is associated with neu-

rodegenerative diseases including multiple sclerosis and Alz-
heimer’s disease (56, 57).

Perhaps most dramatically, we have demonstrated that
the P100 assay is sensitive to disruptions of (at least) the MAPK,
PI3K/mTOR, and cell cycle cascades despite not being ex-
plicitly designed to monitor these pathways (Fig. 7). In these
experiments, we intentionally disrupted important kinases in
these signaling pathways and observed unique P100 signa-
tures that simultaneously allowed us to distinguish the treat-
ments while reconstructing the modularity of the linear path-
ways. For example, phosphoprofiles produced from JAK and
PI3K inhibition positively correlated with one another because
inhibition of JAK will prevent phosphorylation of insulin recep-
tor substrate and p85, which leads to inhibition of the PI3K
pathway (58). These data illustrate how the P100 assay can
stratify samples and reinforce our understanding of network
architecture according to direct and indirect interactions
among the pathways perturbed by drug treatments.

These results validate the idea that the assay is a good
proxy for monitoring diverse cellular processes. Furthermore,
our ability to monitor alterations in these pathways is in good
agreement with the pathways onto which we believe the P100
assay projects (Fig. 3B) based on the underlying configuration
data. Of course, there is certainly room for more focused,
“known” target-driven phosphosignaling assay panels in the
future for specific applications. Another possible improve-
ment might be a hybrid P100-DIA assay that allows focused
detection and quantification of our P100 analytes while retain-
ing the ability to mine primary data for novel phosphopeptide
analytes of interest in defined pathways.

The P100 assay is a robust screening tool on its own, but is
also intended to be used in conjunction with other molecular
profiling techniques (such as gene expression profiling) to
develop comprehensive pictures of cellular responses to per-
turbation. For example, it would be interesting to generate
chromatin signature data on epigenetically active compounds
in our global chromatin profiling assay (35, 59) along with
P100, thus providing measures of processes that are directly
targeted by the molecules together with measures of second-
ary process that might also be of interest. Our demonstration
of signaling responses for these compound classes (Fig. 6)
hints at this possibility. We plan to test this hypothesis by
collaborating with others under the auspices of the Library of
Integrated Network-based Cellular Signatures (LINCS) pro-
gram to systematically collect molecular profiling data from a
diverse set of chemical, genetic, and environmental manipu-
lations across a range of cell types representing important
disease models (www.lincsproject.org). A preview of these
data has been made available even in advance of publication
(https://panoramaweb.org/labkey/LINCS.url). We believe that
these types of large-scale data integration efforts will further
our understanding of how genomics, epigenetics, and phos-
phosignaling contribute to disease progression.
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In conclusion, we developed and qualified a high-through-
put assay that can be used as a tool to interrogate the effects
of molecular perturbations on cell signaling in various cell
types. Using P100 assay data, we demonstrated that re-
duced-representation phosphoprofiles are informative by re-
producing sample classifications observed in our high-
throughput discovery data. We recapitulated prior expected
cell signaling correlations in a reduced assay space and dem-
onstrated that signature strength is time- and dose-respon-
sive. We were also able to identify correlations among pertur-
bations that are known to target the same pathways, as well as
correlations among perturbations that have overlapping down-
stream signaling events. Therefore, we believe the P100 assay
can produce a large number of foundational data sets that can
be queried to identify correlations among phosphosignaling
profiles produced by disparate drug treatments even though
only �100 phosphopeptide probes are monitored. Overall, we
demonstrated the tractability of large-scale phosphoproteomic
studies by presenting a generalizable, high-throughput MS as-
say that can be used as a robust tool that offers the ability to
make longitudinal comparisons among thousands of samples.
These comparisons, especially when married with other molec-
ular profiling data, should be an important contribution from the
phosphoproteomic sphere to our understanding of the molec-
ular underpinning of cellular machinery and its response to
biologically-relevant perturbations.
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