BayBioMS - Ludwig_Ecoli_PQP_Absolute_AQUA_RiboSeq

BayBioMS - Ludwig_Ecoli_PQP_Absolute_AQUA_RiboSeq
From coarse to fine: The absolute Escherichia coli proteome under diverse growth conditions
Data License: CC BY 4.0 | ProteomeXchange: PXD017258
  • Organism: Escherichia coli
  • Instrument: TripleTOF 5600
  • SpikeIn: Yes
  • Keywords: Escherichia coli, absolute protein quantification, AQUA, xTop, DIA, SWATH, targeted proteomics
  • Lab head: Christina Ludwig Submitter: Christina Ludwig
Abstract
Accurate measurements of cellular protein concentrations are invaluable to quantitative studies of gene expression and physiology in living cells. Here, we developed a versatile mass spectrometric workflow based on data-independent acquisition proteomics (DIA/SWATH) together with a novel protein inference algorithm (xTop). We used this workflow to accurately quantify absolute protein abundances in E. coli for >2000 proteins over >60 growth conditions, including nutrient limitations, non-metabolic stresses and non-planktonic states. The resulting high-quality dataset of protein mass fractions allowed us to characterize proteome responses from a coarse (groups of related proteins) to a fine (individual) protein level. Hereby, a plethora of novel biological findings could be elucidated, including the generic upregulation of low-abundant proteins under various metabolic limitations, the non-specificity of catabolic enzymes upregulated under carbon limitation, the lack of large-scale proteome reallocation under stress compared to nutrient limitations, as well as surprising strain-dependent effects important for biofilm formation. These results present valuable resources for the systems biology community and can be used for future multi-omics studies of gene regulation and metabolic control in E. coli.
Experiment Description
Strains Most of this work is based on E. coli K-12 strain NCM3722 whose growth physiology has been extensively characterized. A few derivatives of NCM3722 were also used: EQ59 which constitutively expresses GFP from the chromosome, NQ359 which expresses GOGAT from a titratable promoter in GDH-null background, NQ1431 which harbors phnE+ allele and can utilize phosphonate as a sole phosphorus source, and NQ1527, which restores a mutation in the rpoS gene. Construction of NQ1431 and NQ1527 are described below. For the calibration samples A1, C1 and F1, we used strain EQ353, which is the specific MG1655 strain used in Li et al. 2014. Additionally, we used E. coli K-12 strain MG1655 obtained from the Coli Genetic Stock Center (CGSC#6300) and E. coli Nissle1917 isolated from a Mutaflor capsule (Pharam-Zentrale, Germany). Unless otherwise indicated, growth media used are based on one of the following base media: modified Record’s MOPS medium, phosphate-buffered “N-C-“ medium, M9 medium and Luria-Bertani (LB) medium. E. coli cells collected for the library samples were grown in batch culture as described below. Batch cultures were grown in a 37°C water bath shaker shaking at 250 rpm for aeration. Each growth experiment was carried out in three steps: seed culture in LB broth, pre-culture and experimental culture in an identical growth medium. For seed culture, cells from a single colony grown on LB agar plate was inoculated into liquid LB and grown at 37°C with shaking. Cells in the seed culture were then transferred into the growth medium with proper dilution and grown at 37°C overnight (pre-culture). Cells from the overnight pre-culture was then transferred into the growth medium with proper dilution, and grown at 37°C until harvested for proteomic analysis as described below. Optical densities at 600 nm were measured with a spectrophotometer Genesys 20 (Thermo Scientific).
Sample Description
Proteomic sample preparation The proteomic sample preparation was performed using an optimized E. coli protocol described previously by Schmidt et al.. Briefly, E. coli cell pellets, were lysed with 2% sodium deoxycholate, ultrasonicated and heated to 95°C. Proteins were reduced, alkylated and digested with LysC and trypsin. The peptide mixtures were desalted, dried and resuspended to a concentration of 0.5 µg/µl. To all peptide mixtures the iRT peptide mix (Biognosys) was added directly before the MS-measurement. To increase proteome coverage, 33 µg of peptides from samples Lib1 to Lib30 were pooled and fractionated by off-gel electrophoresis (OGE) into 13 fractions. Exclusively to the three biological replicates of the calibration sample (E. coli strain K-12 MG1655 grown in glucose minimal media at exponential growth phase) a set of 29 stable isotope labeled peptides (AQUA peptides) was spiked after digestion and before C18 purification. Depending on the previously determined endogenous peptide intensities, either a concentration of 10 fmol/µl or 100 fmol/µl was spiked. Those 29 isotope-labeled AQUA peptides were used to absolutely quantify 29 anchor proteins and to hereby confirm the high proteome similarity (also in absolute terms) between the calibration sample generated in-house and the sample studied and published by Li et al. using ribosomal profiling. DDA mass spectrometry LC-MS/MS runs in DDA mode were performed on a TripleTOF 5600 mass spectrometer (SCIEX) interfaced with an NanoLC Ultra 2D Plus HPLC system (Eksigent). Peptides were separated using a 120 min gradient from 2 – 35% buffer B (0.1% v/v formic acid, 90% v/v acetonitrile). The 20 most intense precursors were selected for fragmentation. For the generation of the E. coli spectral library 53 DDA-based proteomic measurements were performed in total. Generation of spectral library and peptide query parameters A non-redundant consensus spectral library was generated with SpectraST. The python script “spectrast2tsv” (https://pypi.python.org/pypi/msproteomicstools) was used to extract peptide query parameters from the spectral library. This script automatically extracted the six most abundant singly or doubly charged b- and y-ion fragments for each peptide precursor in the range between 350 to 2,000 m/z, excluding the precursor isolation window region. iRT peptides were used to generate normalized retention times for all peptides. DIA/SWATH mass spectrometry Tryptic peptides were measured in SWATH mode on two TripleTOF 5600 mass spectrometers (Sciex), both interfaced with an Eksigent NanoLC Ultra 2D Plus HPLC system. Peptides were separated using a 60 minutes gradient from 2–35% buffer B (0.1% (v/v) formic acid, 90% (v/v) acetonitrile). A 64-variable window DIA scheme was applied, covering the precursor mass range of 400–1,200 m/z, with a total cycle time of ~3.45 s. Per MS injection 2 μg of protein amount was loaded onto the HPLC column. DIA/SWATH data analysis The DIA/SWATH data was analysed using OpenSWATH (www.openswath.org). We only changed the following parameter: m/z extraction windows = 50 PPM. To extract the data, we used our E. coli spectral library described before. PyProphet-cli, an extended version of PyProphet, optimally combined peptide query scores into a single discriminative score and estimated q-values using a semi-supervised algorithm. To assign the weight of each OpenSWATH subscore, we used the set of peptide peak groups subsampled from every run with the ratio of 0.07. The software was run using the experiment-wide and global context with a fixed lambda of 0.8, and the results of the experiment-wide mode were filtered with a 1% protein and peptide false discovery rate according to the global mode analysis. TRIC was applied to align extracted and scored peak groups across all the runs following the filtration steps. The resulting peptide-level and protein-level quantitative data matrices are available in Supporting Table S1.
Created on 1/22/20, 3:27 PM
Clustergrammer Heatmap
 
Download
NV0001_Mouse-Skin_mProphet_Panorama_2024-03-09_19-20-18.sky.zip2024-03-10 20:30:291,6595,7905,79028,90434
XW0008_Cas9Myc_DIAassayLIB_OmBcells_17Nov2023_2024-02-24_08-51-18.sky.zip2024-02-24 12:56:485,20383,67483,675605,04024
XW0009_DIAassayLIB_OmBcells_17Nov2023_2024-02-23_18-35-50.sky.zip2024-02-23 22:06:575,20383,64583,647604,72019
AutoQC-lumos-SysS-MouAD-PFC-C2-B5-B7.sky.zip2024-02-20 07:53:561889414
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B07.sky.zip2024-02-18 11:31:099,778127,624127,624966,34712
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B06.sky.zip2024-02-18 10:45:259,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B05.sky.zip2024-02-18 09:51:569,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B04.sky.zip2024-02-18 01:14:219,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B03.sky.zip2024-02-18 00:22:039,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B02.sky.zip2024-02-17 23:29:529,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B01.sky.zip2024-02-17 18:20:009,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B28.sky.zip2024-02-17 17:30:039,778127,624127,624966,3476
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B27.sky.zip2024-02-17 16:57:559,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B26.sky.zip2024-02-17 15:06:069,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B25.sky.zip2024-02-17 14:11:069,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B24.sky.zip2024-02-17 13:17:049,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B23.sky.zip2024-02-17 10:45:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B22.sky.zip2024-02-17 09:52:589,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B21.sky.zip2024-02-17 09:01:129,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B20.sky.zip2024-02-17 01:24:329,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B19.sky.zip2024-02-17 00:31:539,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B18.sky.zip2024-02-16 23:42:139,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B17.sky.zip2024-02-16 21:59:109,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B16.sky.zip2024-02-16 21:08:449,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B15.sky.zip2024-02-16 19:45:379,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B14.sky.zip2024-02-16 18:50:509,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B13.sky.zip2024-02-16 17:05:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B12.sky.zip2024-02-16 16:13:309,778127,624127,624966,34716
XW0008-Myc248_DIAassayLIB_OmBcells_17Nov2023_2024-02-16_10-02-13.sky.zip2024-02-16 15:02:065,20383,67483,675605,04024
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B11.sky.zip2024-02-16 11:03:589,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B10.sky.zip2024-02-16 10:07:519,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B09.sky.zip2024-02-16 09:14:539,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B08.sky.zip2024-02-16 08:20:059,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B07.sky.zip2024-02-16 01:08:409,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B06.sky.zip2024-02-16 00:17:379,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B05.sky.zip2024-02-15 23:29:389,778127,624127,624966,34716
XW0008_nanos3_DIAassayLIB_OmBcells_17Nov2023_2024-02-15_17-02-46.sky.zip2024-02-15 21:13:165,20383,67483,675605,04024
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B04.sky.zip2024-02-15 16:37:369,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B03.sky.zip2024-02-15 14:42:299,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B02.sky.zip2024-02-15 13:44:359,778127,624127,624966,34716
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B01.sky.zip2024-02-15 12:45:409,778127,624127,624966,34716
AutoQC-lumos-PCs-MouAD-PFC-C2-B5-B7.sky.zip2024-02-14 16:42:502141417344
AutoQC-lumos-PCs-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:42:332141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:42:152141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:42:002141417380
AutoQC-lumos-PCs-MouAD-PFC-C1-B25-B28.sky.zip2024-02-14 16:41:372141417354
AutoQC-lumos-PCs-MouAD-PFC-C1-B21-B24.sky.zip2024-02-14 16:41:002141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 16:40:442141417365
AutoQC-lumos-PCs-MouAD-PFC-C1-B13-B16.sky.zip2024-02-14 16:40:282141417364
AutoQC-lumos-PCs-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 16:40:082141417347
AutoQC-lumos-SysS-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:10:161889417
AutoQC-lumos-SysS-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:06:251889416
AutoQC-lumos-SysS-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:02:231889422
AutoQC-lumos-SysS-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 15:59:501889418
AutoQC-lumos-SysS-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 14:48:381889410
ZipChip_HR_Metabolomics_2024Protocol_2024-02-05_17-24-05.sky.zip2024-02-05 14:24:28100821594
22AminoAcids_Fully13CLabeled_2024-01-29_14-30-52.sky.zip2024-01-29 11:32:1410444936
RBD_M_Glyco_2024-01-25_15-29-41.sky.zip2024-01-26 17:23:2672923972,3829
20240104_Neg_FMT_MCBAs_isoRemove_Cleaned_Final_2024-01-25_21-40-19.sky.zip2024-01-26 16:43:471010030056
20231220_Neg_FMT_BA_Full_reduce_Res50_High_final_2024-01-04_15-44-59.sky.zip2024-01-26 16:43:47405112176
P179_UNCSet1_ACE_v0p3_2024-01-24_22-42-18.sky.zip2024-01-24 19:51:4423034963724
P179_UNCSet2_ACE_v0p3_2024-01-24_22-37-25.sky.zip2024-01-24 19:40:1117021336726
New_iRBD2024-01-15 23:30:5233474794292
Paired_CSF_Plasma_Serum2024-01-15 23:30:523347479460
Initial_Targeted_Proteomics2024-01-15 23:30:5233474794441
TPAD_VL_CSF_PRTC_APOA1_2024-01-07_23-01-46.sky.zip2024-01-07 23:08:493464642412
TPAD-CSF-SP3_1-5.sky.zip2024-01-05 06:03:432,90823,74323,743189,895396
173_peptides_iRTs_chromatogram_library_2023-12-22_00-47-19.sky.zip2023-12-22 01:06:36311833561,0822
Figure_8B_Freiburg_ALG1-CDG-Patients_Comparison_2023-12-22_02-34-55.sky.zip2023-12-22 01:06:2022691284006
Figures_4_5_6_7_8A_Heidelberg_CDG-Patients_2023-12-22_02-32-43.sky.zip2023-12-22 01:06:20206712439014
Figure_S5_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-59-41.sky.zip2023-12-22 01:06:2021112146
Figure_9_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-53-52.sky.zip2023-12-22 01:06:2021418404
Figures_3_and_S3_HEK_293T_Fibroblasts_HeLa_2023-12-22_01-03-03.sky.zip2023-12-22 01:06:2023701303989
20210301 Calibration Dev_DilutionOil_2023-12-11_10-57-35.sky.zip2023-12-20 00:34:263482654
20210607 Calibration Curve_DilutionDigest_2023-12-11_10-50-40.sky.zip2023-12-20 00:34:2634824108
20210212 Low range exploration 140K-fragmod_Pub_2023-12-08_16-04-13.sky.zip2023-12-20 00:34:263482456
HeatedOilSpike-LowTemp_HighTemp_Combined_Final_2022-05-26_12-00-47.sky.zip2023-12-20 00:34:26591548204
20200715_PeptideSpecificity_SignalRatio_2022-05-25_16-33-02.sky.zip2023-12-20 00:34:2611202212044
20200622_PeptideSpecificityTest_2022-05-25_16-30-20.sky.zip2023-12-20 00:34:2614252713545
20191112_Diff-TempConc_Oil-Spike_24pep_2022-05-25_14-24-35.sky.zip2023-12-20 00:34:2611242715040
20191007_HeatedOilSpike_Extraction_method_24pep_2022-05-25_14-16-21.sky.zip2023-12-20 00:34:2611242715032
20190904_Organic_Aqueous_Extraction_Oil_Spike_24pep_2022-05-25_14-12-26.sky.zip2023-12-20 00:34:2611242715636
September 21 Import V1 (Samples with IS) w Cal Curve_Blanks Deleted_2023-12-01_11-40-59.sky.zip2023-12-02 23:51:3320262687
September 21 Kaylie New Molecule Import v1 (Filtered)_2023-12-01_11-40-01.sky.zip2023-12-02 23:51:3310161698
September 21 Import V1 all samples (Neg mode only)_2023-12-01_11-35-34.sky.zip2023-12-02 23:51:338014514598
THP1_IFN_PRM_Skyline_2023-11-14_14-22-42.sky.zip2023-11-16 13:26:09711771771,5148
CCS_library_v2.sky.zip2023-11-15 14:36:301061,86361,8630
IdentExpression_2023-09-25_14-39-47.sky.zip2023-10-02 20:45:1381581941,16419
2DGel_II_2023-09-25_14-37-39.sky.zip2023-10-02 20:45:13897408805,28034
2DGel_I_2023-09-25_14-36-13.sky.zip2023-10-02 20:45:13252142321,39232
InGelDigest_Der_p_SEA_II_2023-09-18_10-01-52.sky.zip2023-09-21 11:03:445004,0584,42026,52051
InGelDigest_Der_p_SEA_I_2023-09-15_16-14-11.sky.zip2023-09-21 11:03:443272,3822,52115,12652
FASP_Der_p_SEA_2023-09-15_14-24-26.sky.zip2023-09-21 11:03:445504,2964,77128,6261
230504_Myllys_231247ff_2023-09-20_13-22-59.sky.zip2023-09-21 10:31:2410434398
230512MyllysUrea_231247ff_2023-09-21_15-27-13.sky.zip2023-09-21 10:31:24102292
230511Myllys231247ff_AA_Crea_2023-09-20_13-36-24.sky.zip2023-09-21 10:31:242044166126
AutoQC-lumos-SysS-MouAD-C2-B8-10.sky.zip2023-09-17 11:22:321889414
AutoQC-lumos-SysS-MouAD-C2-B5-B7.sky.zip2023-09-17 11:22:301889415
AutoQC-lumos-SysS-MouAD-C2-B1-B4.sky.zip2023-09-17 11:22:281889419
AutoQC-lumos-SysS-MouAD-C1-B9-B12.sky.zip2023-09-17 11:22:261889413

The DDA results associated with this experiments are available in the ProteomeXchanage dataset PXD014948