PNNL - Sporadic ERK pulses drive non-genetic resistance

PNNL - Sporadic ERK pulses drive non-genetic resistance
Clustergrammer Heatmap
 
Download
figure7_DIA_samples.sky.zip2024-04-09 15:12:49221212513321
figure6_PRM_system_suitability_2024-02-05_19-48-55.sky.zip2024-04-09 15:12:42217171894817
figure6_DIA_samples_2024-02-06_13-03-26.sky.zip2024-04-09 15:12:272212125115721
figure5_DIA_samples.sky.zip2024-04-09 15:12:18221212511521
figure5_PRM_system_suitability.sky.zip2024-04-09 15:12:1821717189617
figure4_PRM_system_suitability.sky.zip2024-04-09 15:12:09217171891417
figure4_DIA_samples.sky.zip2024-04-09 15:12:09221212513221
figure3_PRM_system_suitability.sky.zip2024-04-09 15:12:04217171893717
figure2_PRM_system_suitability_2024-02-02_13-59-23.sky.zip2024-04-09 15:11:54217171898517
NV0001_Mouse-Skin_mProphet_Panorama_2024-03-09_19-20-18.sky.zip2024-03-10 20:30:291,6595,7905,79028,904340
XW0008_Cas9Myc_DIAassayLIB_OmBcells_17Nov2023_2024-02-24_08-51-18.sky.zip2024-02-24 12:56:485,20383,67483,675605,040240
XW0009_DIAassayLIB_OmBcells_17Nov2023_2024-02-23_18-35-50.sky.zip2024-02-23 22:06:575,20383,64583,647604,720190
AutoQC-lumos-SysS-MouAD-PFC-C2-B5-B7.sky.zip2024-02-20 07:53:5618894148
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B07.sky.zip2024-02-18 11:31:099,778127,624127,624966,347120
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B06.sky.zip2024-02-18 10:45:259,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B05.sky.zip2024-02-18 09:51:569,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B04.sky.zip2024-02-18 01:14:219,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B03.sky.zip2024-02-18 00:22:039,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B02.sky.zip2024-02-17 23:29:529,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C2_B01.sky.zip2024-02-17 18:20:009,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B28.sky.zip2024-02-17 17:30:039,778127,624127,624966,34760
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B27.sky.zip2024-02-17 16:57:559,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B26.sky.zip2024-02-17 15:06:069,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B25.sky.zip2024-02-17 14:11:069,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B24.sky.zip2024-02-17 13:17:049,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B23.sky.zip2024-02-17 10:45:369,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B22.sky.zip2024-02-17 09:52:589,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B21.sky.zip2024-02-17 09:01:129,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B20.sky.zip2024-02-17 01:24:329,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B19.sky.zip2024-02-17 00:31:539,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B18.sky.zip2024-02-16 23:42:139,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B17.sky.zip2024-02-16 21:59:109,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B16.sky.zip2024-02-16 21:08:449,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B15.sky.zip2024-02-16 19:45:379,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B14.sky.zip2024-02-16 18:50:509,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B13.sky.zip2024-02-16 17:05:369,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B12.sky.zip2024-02-16 16:13:309,778127,624127,624966,347160
XW0008-Myc248_DIAassayLIB_OmBcells_17Nov2023_2024-02-16_10-02-13.sky.zip2024-02-16 15:02:065,20383,67483,675605,040240
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B11.sky.zip2024-02-16 11:03:589,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B10.sky.zip2024-02-16 10:07:519,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B09.sky.zip2024-02-16 09:14:539,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B08.sky.zip2024-02-16 08:20:059,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B07.sky.zip2024-02-16 01:08:409,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B06.sky.zip2024-02-16 00:17:379,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B05.sky.zip2024-02-15 23:29:389,778127,624127,624966,347160
XW0008_nanos3_DIAassayLIB_OmBcells_17Nov2023_2024-02-15_17-02-46.sky.zip2024-02-15 21:13:165,20383,67483,675605,040240
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B04.sky.zip2024-02-15 16:37:369,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B03.sky.zip2024-02-15 14:42:299,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B02.sky.zip2024-02-15 13:44:359,778127,624127,624966,347160
Lumos-Jax-Cortex-DIA-ind-8mz-ovlp-400to1000-C1_B01.sky.zip2024-02-15 12:45:409,778127,624127,624966,347160
AutoQC-lumos-PCs-MouAD-PFC-C2-B5-B7.sky.zip2024-02-14 16:42:50214141734414
AutoQC-lumos-PCs-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:42:33214141736414
AutoQC-lumos-PCs-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:42:15214141736414
AutoQC-lumos-PCs-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:42:00214141738014
AutoQC-lumos-PCs-MouAD-PFC-C1-B25-B28.sky.zip2024-02-14 16:41:37214141735414
AutoQC-lumos-PCs-MouAD-PFC-C1-B21-B24.sky.zip2024-02-14 16:41:00214141736414
AutoQC-lumos-PCs-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 16:40:44214141736514
AutoQC-lumos-PCs-MouAD-PFC-C1-B13-B16.sky.zip2024-02-14 16:40:28214141736414
AutoQC-lumos-PCs-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 16:40:08214141734714
AutoQC-lumos-SysS-MouAD-PFC-C2-B1-B4.sky.zip2024-02-14 16:10:1618894178
AutoQC-lumos-SysS-MouAD-PFC-C1-B9-B12.sky.zip2024-02-14 16:06:2518894168
AutoQC-lumos-SysS-MouAD-PFC-C1-B4-B8.sky.zip2024-02-14 16:02:2318894228
AutoQC-lumos-SysS-MouAD-PFC-C1-B1-B3.sky.zip2024-02-14 15:59:5018894188
AutoQC-lumos-SysS-MouAD-PFC-C1-B17-B20.sky.zip2024-02-14 14:48:3818894108
ZipChip_HR_Metabolomics_2024Protocol_2024-02-05_17-24-05.sky.zip2024-02-05 14:24:2810082159478
22AminoAcids_Fully13CLabeled_2024-01-29_14-30-52.sky.zip2024-01-29 11:32:141044493622
RBD_M_Glyco_2024-01-25_15-29-41.sky.zip2024-01-26 17:23:2672923972,38290
20240104_Neg_FMT_MCBAs_isoRemove_Cleaned_Final_2024-01-25_21-40-19.sky.zip2024-01-26 16:43:4710100300560
20231220_Neg_FMT_BA_Full_reduce_Res50_High_final_2024-01-04_15-44-59.sky.zip2024-01-26 16:43:474051121760
P179_UNCSet1_ACE_v0p3_2024-01-24_22-42-18.sky.zip2024-01-24 19:51:4423034963724250
P179_UNCSet2_ACE_v0p3_2024-01-24_22-37-25.sky.zip2024-01-24 19:40:1117021336726160
New_iRBD2024-01-15 23:30:52334747942920
Paired_CSF_Plasma_Serum2024-01-15 23:30:5233474794600
Initial_Targeted_Proteomics2024-01-15 23:30:52334747944410
TPAD_VL_CSF_PRTC_APOA1_2024-01-07_23-01-46.sky.zip2024-01-07 23:08:4934646424120
TPAD-CSF-SP3_1-5.sky.zip2024-01-05 06:03:432,90823,74323,743189,8953960
173_peptides_iRTs_chromatogram_library_2023-12-22_00-47-19.sky.zip2023-12-22 01:06:36311833561,08220
Figure_8B_Freiburg_ALG1-CDG-Patients_Comparison_2023-12-22_02-34-55.sky.zip2023-12-22 01:06:20226912840060
Figures_4_5_6_7_8A_Heidelberg_CDG-Patients_2023-12-22_02-32-43.sky.zip2023-12-22 01:06:202067124390140
Figure_S5_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-59-41.sky.zip2023-12-22 01:06:20211121460
Figure_9_Freiburg_ALG11_I-CDG_Natural_Variant_2023-12-22_01-53-52.sky.zip2023-12-22 01:06:20214184040
Figures_3_and_S3_HEK_293T_Fibroblasts_HeLa_2023-12-22_01-03-03.sky.zip2023-12-22 01:06:20237013039890
20210301 Calibration Dev_DilutionOil_2023-12-11_10-57-35.sky.zip2023-12-20 00:34:2634826540
20210607 Calibration Curve_DilutionDigest_2023-12-11_10-50-40.sky.zip2023-12-20 00:34:26348241080
20210212 Low range exploration 140K-fragmod_Pub_2023-12-08_16-04-13.sky.zip2023-12-20 00:34:2634824564
HeatedOilSpike-LowTemp_HighTemp_Combined_Final_2022-05-26_12-00-47.sky.zip2023-12-20 00:34:265915482040
20200715_PeptideSpecificity_SignalRatio_2022-05-25_16-33-02.sky.zip2023-12-20 00:34:261120221204420
20200622_PeptideSpecificityTest_2022-05-25_16-30-20.sky.zip2023-12-20 00:34:261425271354525
20191112_Diff-TempConc_Oil-Spike_24pep_2022-05-25_14-24-35.sky.zip2023-12-20 00:34:261124271504024
20191007_HeatedOilSpike_Extraction_method_24pep_2022-05-25_14-16-21.sky.zip2023-12-20 00:34:261124271503224
20190904_Organic_Aqueous_Extraction_Oil_Spike_24pep_2022-05-25_14-12-26.sky.zip2023-12-20 00:34:261124271563624
SILK_P017_Plasma_F3b_2023-12-11_07-46-49.sky.zip2023-12-15 00:39:411,86816,28945,884142,153260
SILK_P017_Plasma_F2b_2023-12-11_07-23-37.sky.zip2023-12-15 00:39:411,76314,99741,829129,387260
SILK_P017_Plasma_F1b_2023-12-05_14-53-37.sky.zip2023-12-15 00:39:411,1147,68520,06662,088260
SILK_P017_CSF_F5_a_2023-12-05_14-40-01.sky.zip2023-12-15 00:39:414741,5886,23019,284140
SILK_P017_CSF_F4_a_2023-12-05_12-53-48.sky.zip2023-12-15 00:39:412,28014,33844,104136,374140
SILK_P017_CSF_F3_a_2023-12-05_12-18-30.sky.zip2023-12-15 00:39:411,98012,01335,601109,999140
SILK_P017_CSF_F2_a_2023-12-05_11-46-34.sky.zip2023-12-15 00:39:412,11615,37639,746122,899140
SILK_P017_CSF_F1_a_2023-12-05_11-23-42.sky.zip2023-12-15 00:39:411,4084,1508,04524,921140
September 21 Import V1 (Samples with IS) w Cal Curve_Blanks Deleted_2023-12-01_11-40-59.sky.zip2023-12-02 23:51:332026268713
Sporadic ERK pulses drive non-genetic resistance in drug-adapted BRAFV600E melanoma cells
  • Organism: Homo sapiens
  • Instrument: TSQ Vantage
  • SpikeIn: Yes
  • Keywords: Systems pharmacology, targeted therapy, adaptive resistance, BRAFV600E cancers, ERK/MAPK pathway, kinetic modeling
  • Lab head: Tujin Shi Submitter: Tujin Shi
Abstract
Anti-cancer drugs commonly target signal transduction proteins activated by mutation. In human melanomas carrying mutated BRAF, small molecule RAF and MEK kinase inhibitors cause dramatic but often transient tumor regression. Drug resistance emerges on multiple time scales. Soon after drug exposure, BRAFV600E melanomas undergo adaptive (reversible) resistance involving disruption of negative feedback on MAPK signaling. By combining computational and experimental modelling, we show here that adaptive resistance involves pulsatile reactivation of the MAPK pathway so that MAPK activity is low on average but high enough in some cells to drive cell division. This is possible due to the co-existence of two MAPK cascades: one driven by BRAFV600E that is drug-sensitive and a second driven by receptor tyrosine kinases that is drug-resistant. The latter is repressed by the former unless RAF and MEK inhibitors are present. MAPK pulsing then occurs in response to factors in the microenvironment, making RAF inhibitors ineffective and reducing the potency of MEK inhibitors. The presence of two MAPK cascades wired differently is likely an Achilles heel with respect to drug resistance in melanoma, but it may explain the high tolerability of RAF/MEK inhibitors in patients.
Experiment Description
Targeted quantification of protein abundances and phosphorylation was performed as previously described (Shi et al., 2016). Briefly, cell pellets from A375 cell lines treated with different doses of vemurafenib were lysed in 100 μl of lysis buffer containing 8 M urea in 100 mM NH4HCO3 (pH 7.8). Proteins were reduced by 5 mM dithiothreitol for 1 hour at 37°C and alkylated using 20 mM iodoacetamide for 1 hour at room temperature in the dark. Samples were diluted eightfold with 50 mM NH4HCO3 and digested by sequencing grade modified trypsin at a 1:50 enzyme-to-protein ratio (w/w) at 37°C for 3 hours. Each sample was then desalted by C18 solid phase extraction and concentrated to a volume of ~100 μl. The final peptide concentration was measured using bicinchoninic acid assay with an average of ~4 µg/µL. 10 µg and 100 µg of the peptide mixture per sample were used with the addition of 200 fmol and 50,000 fmol of crude heavy peptides for quantification of protein abundance and protein phosphorylation dynamics, respectively. For protein abundance quantification (Shi et al., 2016)(Yi et al., 2018), crude heavy-isotope labeled synthetic peptides were purchased from Thermo Scientific and two best response peptides were selected to configure final selected reaction monitoring (SRM) assays for each target protein. All samples were measured by regular LC-SRM using the scheduled SRM algorithm (Shi et al., 2017) for simultaneous quantification of the selected target proteins. For targeted quantification of phosphorylation (Yi et al., 2018), phosphopeptides were selected for core component proteins for the EGFR-MAPK pathway. Crude heavy isotope-labeled phosphopeptides were purchased from New England peptides and spiked into the peptide sample prior to phosphopeptide enrichment. Phosphopeptides were enriched by immobilized metal-ion affinity chromatography (IMAC) with Fe3+-NTA agarose beads. Eluted phosphopeptides were dried down and stored at -80°C until further LC-MS/MS analysis. Lyophilized phosphopeptides were reconstituted in 0.1% FA and subjected to LC-SRM analysis immediately. All LC-SRM measurements were performed using the nanoACQUITY UPLC system coupled online to a TSQ Vantage triple quadrupole mass spectrometer (Thermo Scientific). SRM data were analyzed using Skyline software (MacLean et al., 2010) and the best transitions without interferences were used for quantification. The SRM peak area ratios of the endogenous light peptides over heavy peptide standards (i.e., the L/H ratio) were reported for all SRM measurements.
Sample Description
A375 cells were grown for at least 2 passages to 80% confluence in a 10 cm Petri dish. After washing with PBS, cells were incubated with 0.25% trypsin/2.21 mM EDTA 1× (Corning) for 2 minutes for cell detachment. After adding 20 ml complete medium, cells were thoroughly homogenized into a single cell suspension which was confirmed by microscopy. Cell count was determined using a TC20 automated cell counter (Bio-Rad). The cell suspension was serially diluted with complete medium (containing 10% FBS) to a final concentration of 20 cells in 15 ml and 150 μl of that dilution was dispensed in wells of a 96-well plate (0.2 cells per well). After about 14 days, wells that showed clonal growth (15-20 per 96-well plate) were expanded by passaging the cell line into larger dishes in complete medium.
Created on 7/16/19, 10:11 PM