
Figure S1. SWATH MS data quality, linked to Figure 2. 
(A) Fraction of directly quantified peptide features by integration of a confidently assigned 
fragment ion peak group for at least one peptide (mScore represents the feature FDR and 
indicates the peak quality, the lower the better). Background extraction means that for these 
proteins no peptide could be confidently identified (mScore > 0.05) and therefore the protein 
intensity was obtained by integrating the background signal at the expected peptide retention 
time, generating a value that represents the maximally possible signal intensity for that peptide. 
(B) Same as for (A), but on protein level. For every protein the best peptide feature over all runs 
(lowest average mScore) was selected as representative protein score.  
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Figure S2. SWATH-based label-free absolute protein abundance estimation, linked to 
Figure 2.  
(A) Heatmap illustrating cross-validated mean fold errors for various published absolute label-
free protein abundance estimation methods. The different methods were evaluated using the 
aLFQ R package (Rosenberger et al., 2014). All calculations were based on 30 endogenous 
anchor proteins, for which accurate absolute protein concentrations had been determined in all 
samples using stable isotope-labelled peptides. Remarkably, all absolute label-free methods 
resulted in a mean fold error < 2. The sum of the top 5 transitions of the top 3 peptides per 
protein had the lowest cross-validated mean fold error (1.5) and was selected for further 
analyses. (B) Cross-validated mean fold error distribution for the optimal model identified in (A). 
(C) A protein standard consisting of 48 human proteins at 6 different concentrations spanning 5 
orders of magnitude (UPS2, Sigma-Aldrich) was spiked into two Mtb whole-cell lysates. For 21 
out of the 48 human spike-in proteins, ranging from 0.5 to 500 fmol/µg, the criteria for absolute 
protein abundance estimation were fulfilled, i.e. at least 2 peptides per protein were quantified 
with high confidence. Linear correlation of the spike-in concentrations provided by the 
manufacturer and absolute protein abundance estimates using the top 5 transitions of the top 3 
peptides per protein showed a high correlation coefficient (R2 = 0.94) and a mean fold error 
(MFE) of 3.8-fold. Hence, this analysis confirmed the validity of the absolute label-free 
abundance estimation approach on a completely independent set of proteins. (D) Absolute 
protein abundances determined in this study on a global cellular level reflected theoretical 
complex stoichiometries. The theoretical stoichiometry of subunits is indicated on the x-axis, 
while the estimated protein abundance is given on the y-axis. If the cell would produce exactly 
the amount of protein required to build the complex, the correlation would be perfect with a 
slope of 1 and a y-axis intercept of 0. 
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Figure S3. Absolute protein abundances of essential genes and correlation between 
absolute and relative quantitative data, linked to Figure 3.  
(A) Protein products of essential genes for optimal growth in vitro (Griffin et al., 2011) (dark 
grey) were on average significantly more abundant compared to all other proteins (light grey) 
during the entire course of the experiment. A two-sample Kolmogorov-Smirnov test was applied 
to compare the essential protein set (n=606) to all proteins (n=2023) resulting in a p-value < 10-8 
for all time points. (B) Comparison of absolute concentration (at day 0) and log2 fold change of 
day 20 versus day 0 indicates that there is no clear correlation between absolute abundance 
and fold changes. Proteins highlighted in red are members of the DosR regulon.  
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Figure S4. Regulation of metabolic subnetworks, linked to Figure 6.  
Network representing connected reactions (path length ≥ 4), for which all corresponding 
enzymes were changed significantly in at least one time point (fold change ≥ 1.5, p-value ≤ 
0.01). Colouring represents protein abundances (edges) and metabolite intensities (nodes) 
normalised by z-score. 
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Supplemental Figure Legends 
 

Figure S1. SWATH MS data quality, linked to Figure 2 

(A) Fraction of directly quantified peptide features by integration of a confidently 

assigned fragment ion peak group for at least one peptide (mScore represents the 

feature FDR and indicates the peak quality, the lower the better). Background extraction 

means that for these proteins no peptide could be confidently identified (mScore > 0.05) 

and therefore the protein intensity was obtained by integrating the background signal at 

the expected peptide retention time, generating a value that represents the maximally 

possible signal intensity for that peptide. (B) Same as for (A), but on protein level. For 

every protein the best peptide feature over all runs (lowest average mScore) was 

selected as representative protein score.  

 

Figure S2. SWATH-based label-free absolute protein abundance estimation, linked 

to Figure 2 

(A) Heatmap illustrating cross-validated mean fold errors for various published absolute 

label-free protein abundance estimation methods. The different methods were evaluated 

using the aLFQ R package (Rosenberger et al., 2014). All calculations were based on 30 

endogenous anchor proteins, for which accurate absolute protein concentrations had 

been determined in all samples using stable isotope-labelled peptides. Remarkably, all 

absolute label-free methods resulted in a mean fold error < 2. The sum of the top 5 

transitions of the top 3 peptides per protein had the lowest cross-validated mean fold 

error (1.5) and was selected for further analyses. (B) Cross-validated mean fold error 

distribution for the optimal model identified in (A). (C) A protein standard consisting of 48 

human proteins at 6 different concentrations spanning 5 orders of magnitude (UPS2, 

Sigma-Aldrich) was spiked into two Mtb whole-cell lysates. For 21 out of the 48 human 

spike-in proteins, ranging from 0.5 to 500 fmol/µg, the criteria for absolute protein 

abundance estimation were fulfilled, i.e. at least 2 peptides per protein were quantified 

with high confidence. Linear correlation of the spike-in concentrations provided by the 

manufacturer and absolute protein abundance estimates using the top 5 transitions of 

the top 3 peptides per protein showed a high correlation coefficient (R2 = 0.94) and a 

mean fold error (MFE) of 3.8-fold. Hence, this analysis confirmed the validity of the 

absolute label-free abundance estimation approach on a completely independent set of 



 

 

proteins. (D) Absolute protein abundances determined in this study on a global cellular 

level reflected theoretical stoichiometries of members of multi-protein complexes. The 

theoretical stoichiometry of subunits is indicated on the x-axis, while the estimated 

protein abundance is given on the y-axis. If the cell would produce exactly the amount of 

protein required to build the complex, the correlation would be perfect with a slope of 1 

and a y-axis intercept of 0.  

 

Figure S3. Absolute protein abundances of essential genes and correlation 

between absolute and relative quantitative data, linked to Figure 3 

(A) Protein products of essential genes for optimal growth in vitro (Griffin et al., 2011) 

(dark grey) were on average significantly more abundant compared to all other proteins 

(light grey) during the entire course of the experiment. A two-sample Kolmogorov-

Smirnov test was applied to compare the essential protein set (n=606) to all proteins 

(n=2023) resulting in a p-value < 10-8 for all time points. (B) Comparison of absolute 

concentration at day 0 and log2 fold change of day 20 versus day 0 indicates that there is 

no clear correlation between absolute abundance and fold changes. Proteins highlighted 

in red are members of the DosR regulon.  

 

Figure S4. Regulation of metabolic subnetworks, linked to Figure 6 

Network representing connected reactions (path length ≥ 4), for which all corresponding 

enzymes were changed significantly in at least one time point (fold change ≥ 1.5, p-value 

≤ 0.01). Colouring represents protein abundances (edges) and metabolite intensities 

(nodes) normalised by z-score. 

  



 

 

Supplemental Table Legends 
 

Table S1. Proteome-wide relative quantification by SWATH MS, linked to Figure 2  

Results of relative SWATH MS-based quantification of proteins in Mtb (sheet “Mtb 

relative”) and BCG (sheet “BCG relative”) compared to day 0 of the hypoxic time course. 

For Mtb, p-values were adjusted for multiple hypotheses testing using the Benjamini-

Hochberg method. For BCG, no p-values were calculated because no biological 

replicates were available. For subsequent analyses, significantly changing proteins were 

considered if they had a fold change > 1.5 and a p-value < 0.01 in at least one of the 

conditions compared to day 0. For proteins with identical amino acid sequences 

(TubercuList v2.6 R27) only one representative protein was kept (see list in sheet 

“Description”). 

 

Table S2. Anchor protein absolute quantification, linked to Figure 2  

To investigate the correlation between peptide concentration and SWATH signal 

intensity and to determine the lower limit of quantification for every stable isotope 

labelled standard peptide, a dilution series experiment spanning 30 to 0.1 fmol/µg in a 

constant background (1 µg Mtb whole cell lysate) was performed (sheet “Dilution 

series”). All peptides showed a good linear correlation as indicated by a Pearson 

R2 above 0.94, slopes close to 1 and axis intercepts close to 0. Furthermore, quantified 

endogenous peptide concentrations were not significantly lower than the lower limit of 

quantification determined by the dilution series experiment. Absolute peptide 

abundances for 51 peptides representing 30 anchor proteins are given in sheet 

“Absolute peptides”. Absolute protein abundances for 30 anchor proteins are given in 

sheet “Absolute proteins”. For those proteins for which two absolutely quantified 

peptides were available, individual peptide concentrations were averaged. 

Concentrations are given in fmol peptide per µg of total cell extract (fmol/µg).  

Abbreviation: CAM = Carbamidomethylation 

 

Table S3. Dynamic proteome-wide absolute abundance estimates, linked to 

Figure 2 

Results of label-free SWATH MS-based absolute protein abundance estimation of 

proteins in Mtb (sheet “Mtb absolute per sample”) and BCG (sheet “BCG absolute per 

sample”) in the hypoxic time course. Absolute protein abundances were estimated 



 

 

based on the Top3 approach and linear regression of a set of accurately quantified 

anchor proteins. Cross-validation analysis indicated for the abundance estimates an 

average fold-error of approximately 2. Absolute concentrations are given in protein 

copies per cell, assuming a cellular protein concentration of 0.2 g/ml and a cell volume of 

0.5 µm3. For Mtb, absolute protein abundances of biological replicates were averaged 

and standard deviations were calculated (sheet “Mtb absolute per condition”). Technical 

replicate (Rep3b) was not considered in this calculation. For BCG no biological 

replicates were available and absolute protein abundances represent the average over 

the two technical replicates (sheet “BCG absolute per condition”). For proteins with 

identical amino acid sequences (TubercuList v2.6 R27) only one representative protein 

was kept (see list in sheet “Description”). 

 

Table S4. Subnetwork analysis, linked to Figure 6 

Abbreviations of all metabolites contained in the subnetworks extracted from the 

genome-scale model are given in sheet “Metabolite abbreviations”. Metabolites which 

were not used in building the reaction-reaction connections for the subnetwork analysis 

are given in sheet “Metabolites excluded”. Z-scores of proteins which were part of the 

subnetwork of regulated reactions were calculated by subtracting from the mean fold 

change of the absolute abundance estimate over the biological replicates from one time 

point the mean fold change across all time points and dividing the result by the standard 

deviation across time points (sheet “Protein z-scores”). Protein pathway assignments 

were exported from the TBDB database. 

 

Table S5. Metabolite data, linked to Figure 6 

Raw ion intensities obtained by direct injection MS using a quadrupole-coupled time of 

flight mass spectrometer at low mass range settings (sheet “Raw intensities”). The 

genome scale metabolic model of Mtb was used to compile a metabolite reference list. 

Ions were assigned to metabolites using this list, allowing a mass tolerance of 1 mDa 

and applying an intensity cut-off of 1500 counts. For each metabolite only the best 

corresponding ion was kept. (For two metabolites, methanol and UDP-N-

glycolylmuramoyl-L-alanyl-D-glutamate, two ions were matching equally well). For each 

sample, ion intensities were normalised by the mean ion intensity across all detected 

ions (sheet “Normalised intensities”). Normalised intensities were then standardised with 

z-scores and are given in sheet “Z-scores”. The z-score was calculated as follows:  



 

 

(value - mean(values across conditions))/std(values across conditions). Fold changes of 

averaged intensities (across four replicates) to time point day 0 are given in sheet “Fold 

changes and p-values”. P-values were obtained from a two-sample t-test with unequal 

variances (ttest2 function in Matlab) and adjusted for multiple hypotheses testing with 

the Benjamini-Hochberg method. 

 

Table S6. Enzyme turnover frequency coefficients, linked to Figure 7  

For each enzyme, EC number information was downloaded from the BRENDA database 

using an in-house written Python script. If available, the median value for the turnover 

frequency coefficient (kcat) reported for Mtb and the median value reported for all 

organisms was recorded. For estimation of maximum reaction velocities (Vmax), the 

median kcat for Mtb was used, if available. In case no Mtb-specific value was reported, 

the median kcat value of all organisms was used. If for a specific enzyme no kcat 

information was available at all, 1 was taken as default value. Mappings between protein 

Rv and enzyme EC numbers were obtained from the TBDB database. For PfkA and 

PfkB, turnover frequency values were calculated based on activity values obtained 

directly from the literature (Phong et al., 2013). 

 

Table S7. TBDB pathway enrichment in the set of significantly changing proteins, 

linked to Figure 7  

Results of pathway enrichment of all significantly up or down-regulated proteins. TBDB 

pathway definitions were downloaded from the TBDB database. In every sheet of the 

Excel file, three columns are provided for each time point: enrichment p-value, adjusted 

p-value (Benjamini-Hochberg), and enrichment statistics (number of pathway proteins in 

the subset, size of the protein subset, number of proteins in the pathway, total number of 

proteins). For all time points, time point day 0 was used as a reference. For time points 

day20+6h and day20+48h day 20 was also used as a reference. The overview table in 

the sheet “Description” describes in detail the information in the eight data sheets of this 

Excel file. 

  



 

 

Supplemental Experimental Procedures 
 

Reference proteome annotation 

As a reference annotation of the Mtb proteome we used TubercuList v2.6 R27 (March 

2013). The protein sequence FASTA file was downloaded from the web 

(http://tuberculist.epfl.ch). The first amino acid of each protein was replaced by a 

methionine and all internal stop codons and other non-amino acid characters were 

removed from the protein sequences. In Mtb several proteins encoded at different 

locations in the genome have identical sequences. These redundancies were removed 

by deleting multiple entries of the same protein sequence and just keeping the first one 

as a representative (CD-HIT tool: http://cd-hit.org). The number of annotated protein 

sequences in TubercuList v2.6 R27 is 4031. After removal of identical sequences, 3990 

unique protein sequences remain. We based our analysis on the unique proteins only. A 

list of identical protein sequences and the corresponding base protein kept for this study 

is given in the “Description” tab of Table S1.  

 

Bacterial cultures 

Mtb H37Rv (ATCC #27294) and M. bovis BCG was grown in Dubos broth enriched with 

Dubos Medium Albumin (Becton Dickinson) at 37°C. Hypoxia experiments were started 

by diluting exponentially growing bacteria (OD600=0.4, day 0) to an OD600 of 0.005 as 

described earlier (Lim et al., 1999; Wayne and Hayes, 1996). The tightly sealed glass 

vials with a fixed headspace-culture ratio of 1:2 were kept closed until harvesting to 

prevent exposure to external oxygen. Samples were taken at 5, 10 and 20 days of the 

hypoxic time course (day 5, day 10 and day 20). After sampling at day 20, remaining 

glass vials were opened and cultures were transferred into new vessels for aerated 

incubation at 80 rpm and 37°C. Further time points were sampled from the re-aerated 

cultures after 6 and 48 hours (day 20+6h and day 20+48h).  

 

Proteomics sample preparation 

Bacteria from 5 Wayne flasks (87.5 ml) were harvested by centrifugation at 3000 g for 10 

min and washed with ice-cold phosphate-buffered saline. Pellets were then resuspended 

in lysis buffer containing 8 M urea and 0.1% RapiGest, (#186001861, Waters) in 0.1 M 

ammonium bicarbonate buffer. The cell suspension was thoroughly vortexed and 

incubated at room temperature for 10 min while shaking at 1000 rpm. Subsequently, 



 

 

bacilli were subjected to three 10-min cycles of sonication at 4°C (100% output, 50% 

intervals, Branson Sonifier 450, Emerson) and additionally disrupted by three 10-min 

cycles of bead beating at 4°C using glass beads with a diameter of 0.5 mm (SIGMA 

#G8772). After each cycle, lysates were centrifuged for 10 min at 16,000 g and fresh 

lysis buffer was added. In total, 250 µl of lysis buffer was added. Protein lysates were 

sterile filtered twice for decontamination and protein concentration was determined using 

a bicinchoninic acid (BCA) assay according to the manufacturer’s protocol (#23227, 

Thermo Fisher Scientific). From each sample only 50 µg of protein was used for 

subsequent steps. 

The Universal Proteomics Standard 2 (UPS2, Sigma-Aldrich) is a set of 48 unlabelled 

human proteins at 6 different concentrations (8 proteins per concentration) spanning 5 

orders of magnitude (50 pmol to 500 amol, 10.6 µg total protein). One tube was 

dissolved in 40 µl of lysis buffer. 20 µl of this UPS solution added to one replicate of the 

samples from day 0 and day 20, whereas to all other samples, 20 µl of lysis buffer was 

added. 

Protein disulfide bonds were reduced by adding 5 mM tris(2-carboxyethyl)phosphine 

(TCEP) and incubating for 30 min at 30°C. Next, the free cysteine residues were 

alkylated by adding 40 mM iodoacetamide and incubating for 60 min in the dark at room 

temperature. Subsequently, the samples were diluted with 0.05 M ammonium 

bicarbonate buffer to reach a urea concentration of 6.7 M. 0.5 µg LysC (#125-05061, 

Wako) was added to each sample (w/w 1:100) and incubated at 30°C for 6 hours. Then 

the samples were further diluted to a urea concentration <2 M and 1 µg of sequencing-

grade modified trypsin (#608-274-4330, Promega) was added (w/w 1:50). The samples 

were incubated over night at 30°C with gentle shaking at 300 rpm. At this step 51 

isotopically labelled synthetic reference peptides (AQUA QuantPro, Thermo Fisher 

Scientific) for absolute quantification of the 30 anchor proteins were added to the 

samples in concentrations roughly adjusted to the corresponding endogenous peptides. 

To stop the tryptic digest and to precipitate RapiGest the pH was lowered to 2 using 

trifluoro acetic acid (final concentration of ~1%) followed by an incubation for 30 min at 

37°C with shaking at 500 rpm. The water-immiscible degradation product of RapiGest 

was pelleted by centrifugation at 16,000 g for 10 min. 

The cleared peptide solution was desalted with C18 MicroSpin columns (The Nest 

Group, 5-60 µg loading capacity). Prior to use, the C18 columns were activated with 

100% methanol, followed by 80% acetonitrile (ACN)/0.1% TFA, followed by equilibration 



 

 

with 2% ACN/0.1% TFA. After loading the sample, the columns were washed with 2% 

ACN/0.1% TFA. Finally, peptides were eluted with 40% ACN/0.1% TFA, dried under 

vacuum, and resolubilised in 46 µl 2% ACN/0.1% FA and 4 µl iRT peptide mix (RT-kit 

WR, Biognosys) to a final concentration of 1 mg/ml. The iRT peptides are important to 

allow determination of system-independent retention times (iRT) for each peptide 

relative to these calibration peptides as recently described by Escher and colleagues 

(Escher et al., 2012). 

 

SWATH assay library generation 

As an input for the SWATH assay library the following samples were acquired on a 

TripleTOF 5600 in data/information-dependent acquisition (IDA) mode: (i) 19 pools of up 

to 1000 crude synthetic peptides (Schubert et al., 2013) each, (ii) 24 off-gel 

electrophoresis (OGE) fractions of an Mtb lysate consisting of bacteria from exponential 

and stationary phase cultures (Schubert et al., 2013), (iii) 12 unfractionated whole cell 

lysates of Mtb and M. bovis BCG during hypoxic stress. To each of the 55 samples iRT 

peptides (RT-kit WR, Biognosys) were added.  

The TripleTOF 5600 mass spectrometer (AB Sciex) was coupled to a nanoLC 1Dplus 

system (Eksigent) and the chromatographic separation of the peptides was performed 

on a 20-cm emitter (75 µm inner diameter, #PF360-75-10-N-5, New Objective) packed 

in-house with C18 resin (Magic C18 AQ 3 µm diameter, 200 Å pore size, Michrom 

BioResources). A linear gradient from 2-35% solvent B (98% ACN/0.1% FA) was run 

over 90 min (synthetic peptide pools) or 120 min (OGE fractions and whole cell lysates) 

at a flow rate of 300 nl/min. The mass spectrometer was operated in IDA mode with a 

500 ms survey scan from which up to 20 ions exceeding 250 counts per second were 

isolated with a quadrupole resolution of 0.7 Da, using an exclusion window of 20 s. 

Rolling collision energy was used for fragmentation and an MS2 spectrum was recorded 

after an accumulation time of 150 ms.  

Raw data files (wiff) were centroided and converted into mzML format using the AB 

Sciex converter (beta version 2011) and subsequently converted into mzXML using 

openMS (version 1.8). The converted data files were searched using the search engines 

X!Tandem (k-score, version 2013.06.15.1), Omssa (version 2.1.9), Myrimatch (version 

2.1.138), and Comet (version 2013.02, revision 2) against the 3990 annotated Mtb 

protein sequences (TubercuList, see above), ~100 common contaminants, the 48 UPS 

proteins and the sequences of the iRT peptides. Further, for every of these target 



 

 

proteins a corresponding decoy protein was generated based on concatenated pseudo-

reversed peptide sequences (the sequence of every tryptic peptide is reversed while 

keeping lysine and arginine residues at the C-terminus). Only fully tryptic peptides with 

up to two missed cleavages were allowed for the database search. The tolerated mass 

errors were 50 ppm on MS1 level and 0.05 Da on MS2 level. Carbamidomethylation of 

cysteines was defined as a fixed modification and methionine oxidation as a variable 

modification. The search results were processed with PeptideProphet (Keller et al., 

2002) and iProphet (Shteynberg et al., 2011) as part of the TPP 4.7.0 (Deutsch et al., 

2010). To determine the iProphet cut-off corresponding to a 1% protein FDR, the 

software tool MAYU (version 1.0.7) (Reiter et al., 2009) was applied. The SWATH assay 

library was constructed from the iProphet results with an iProphet cut-off of 0.990315, 

corresponding to a 1% FDR on protein level. The raw and consensus spectral libraries 

were built with SpectraST (version 5.0) (Lam et al., 2007; 2008) using the -cICID_QTOF 

option for high resolution and high mass accuracy and -c_IRT and -c_IRR options to 

normalise all retention times according to the iRT peptides with a linear regression. The 

5 most intense y and b fragment ions of charge state 1 and 2 were extracted from the 

consensus spectral library using spectrast2tsv.py from msproteomicstools 

(https://pypi.python.org/pypi/msproteomicstools). Fragment ions falling into the swath 

window of the precursor were excluded as the resulting signals are often highly 

interfered. All miscleaved and methionine oxidised peptides were removed before 

converting the library into TraML format using the OpenMS tool ConvertTSVToTraML 

(version 1.10.0). Decoy transition groups were generated based on shuffled sequences 

(decoys similar to targets were excluded) by the OpenMS tool 

OpenSwathDecoyGenerator (version 1.10.0) and appended to the final SWATH library 

in TraML format. 

 

SWATH data acquisition 

The TripleTOF 5600 mass spectrometer was set up as described above, but operated in 

SWATH mode (Gillet et al., 2012) using the following parameters: For the liquid 

chromatography a linear gradient from 2-35% solvent B (98% ACN/0.1% FA) was run 

over 120 min at a flow rate of 300 nl/min. Acquisition of a 100-ms survey scan was 

followed by acquisition of 32 fragment ion spectra from 32 precursor isolation windows 

(swaths) of 26 m/z each. The swaths were overlapping by 1 m/z and thus cover a range 

of 400-1200 m/z. The SWATH MS2 spectra were recorded with an accumulation time of 



 

 

100 ms and cover 100-2000 m/z. The collision energy for each window was determined 

according to the calculation for a charge 2+ ion centred upon the window with a spread 

of 15. Raw data files (wiff) were converted into mzXML format using ProteoWizard 

(version 3.0.3316) (Chambers et al., 2012). 

 

SWATH data analysis with OpenSWATH 

The SWATH data was analysed using OpenSWATH (Röst et al., 2014) with the 

following parameters: Chromatograms were extracted with 50 ppm around the expected 

mass of the fragment ions and with an extraction window of +/-5 min around the 

expected retention time after iRT alignment. The best model to separate true from false 

positives (per run) was determined by pyprophet with 10 cross-validation runs (Teleman 

et al., 2014). The runs were subsequently aligned with a target FDR of 0.01 

(mScore < 0.00159) and a maximal FDR of 0.05 for aligned features (Röst et al., 

unpublished). In the absence of a confidently identified feature, the peptide and protein 

intensities were obtained by integration of the respective background signal at the 

expected peptide retention time (Röst et al., unpublished). 

 

Refinement of the SWATH dataset 

To reduce the size of the output data and remove low-quality features, a filtering step 

was introduced to only keep the 10 most intense peptides per protein and only features 

that were identified with an FDR of < 0.01 in all replicates of at least one condition, i.e. 

time point. Further, the 21 most abundant proteins in the 24 Mtb samples  were manually 

requantified using Skyline (MacLean et al., 2010), because OpenSWATH could not 

consistently integrate the distorted peak shapes resulting from overloaded 

chromatography. The requantified peaks can be visualised in Panorama: 

panoramaweb.org/labkey/Mtb_requant.url. 

 

Relative protein quantification 

To obtain fold changes and corresponding p-values of all proteins compared to day 0 

(exponential growth), the software MSstats (version MSstats.daily 2.3.5) was used (Choi 

et al., 2014). The input data was reduced to maximally 5 peptides per protein and 

normalised such that the median of each sample was constant. The fold changes and 

p-values of all time points compared to day 0 were obtained by linear mixed models with 

expanded scope of biological and technical replication. P-values were adjusted for 



 

 

multiple hypotheses testing using the Benjamini-Hochberg method as implemented in 

MSstats. For subsequent analysis, significantly changing proteins were considered if 

they had a fold change > 1.5 and a multiple hypotheses testing-adjusted p-value < 0.01 

in at least one of the time points compared to day 0. K-means clustering was performed 

using Pearson correlation (MultipleExperiment Viewer v4.8.1). For cluster analysis, the 

data was standardised by subtracting the mean and dividing by the standard deviation. 

 

Absolute label-free protein abundance estimations  

For absolute label-free abundance estimations of all proteins identified by SWATH MS, 

30 anchor proteins were selected covering a wide abundance range of the Mtb proteome 

(Schubert et al., 2013). For each anchor protein one or two synthetic isotope-labelled 

reference peptides in defined concentrations as determined by amino acid analysis were 

spiked into the samples for accurate absolute quantification of these anchor proteins 

(see sample preparation paragraph). To ensure accurate absolute quantitation results, 

the linear dynamic quantification range and the lower limit of quantification for each 

reference peptide was determined by performing a dilution series experiment. In the end, 

51 peptides showed good linear response (slope close to 1, axis intercept close to 0, 

R2  > 0.94) and suitable lower limit of quantification with respect to endogenous protein 

levels. All results of this experiment are summarised in Table S2 and can be visualised 

in Panorama: panoramaweb.org/labkey/Mtb_dilutions.url. Absolute concentrations of all 

anchor proteins over all samples were analysed manually using Skyline (MacLean et al., 

2010) and corresponding raw chromatographic data are available in Table S2 and in 

Panorama: panoramaweb.org/labkey/Mtb_anchors.url. Integrated peak areas of the 

reference and endogenous peptides were summed and from the obtained ratios the 

endogenous peptide concentration was determined in fmol/µg. Of note, in the here 

described absolute quantification procedure, which is based on monoisotopic peak areas 

measured with high-resolution mass spectrometry, we did not account for differences in 

the theoretical isotopic distributions between the light and heavy peptide forms. 

The optimal model to combine SWATH MS intensities to a single protein MS signal was 

determined by Monte Carlo cross-validation (Ludwig et al., 2012) using the aLFQ R 

package (version 1.3.1) (Rosenberger et al., 2014). Summarising the five most intense 

transitions of the three most intense peptides per protein was the resulting model with 

the highest accuracy and was used to estimate proteome-wide concentrations from the 

SWATH MS signal intensities. For proteins detected with only two peptides absolute 



 

 

abundance estimation was based on those two peptides, while proteins with only a 

single quantified peptide were excluded from further analysis.  

 

Estimating protein copies per cell 

The raw unit of protein concentrations in the present study was in “fmol per µg of 

extracted protein” because this is the direct readout of our measurements and the most 

accurate way to present the data. However, for various applications it is desirable to 

work in the unit “protein copies per cell”. To convert “fmol per µg of extracted protein” 

into “protein copies per cell” two assumptions are required: (i) 100% of all proteins were 

extracted during sample preparation and (ii) the protein concentration of a cell is in the 

range of 2x106 proteins/µm3, which in the case of Mtb corresponds to ~1x106 

proteins/cell (assuming a cell volume of 0.5 µm3) (Milo, 2013). This value corresponds to 

a protein density of 0.2 g/ml, which was reported by Milo and colleagues (Milo, 2013) as 

a reasonable value for various cell types, including mammalian cells, budding yeast and 

E. coli. As an alternative to these assumptions, cells could be counted prior to lysis. 

While this is the standard approach for other organisms, such as yeast, in Mtb cell 

counting is challenging and can be highly error prone because the cells tend to form 

clumps which impede accurate microscopy-supported counting or counting of colony-

forming units. When working in the unit of “copies per cell”, also potential changes in cell 

volume or cell wall enlargements - both have been described for Mtb in the Wayne 

model - might need to be taken into consideration (Cunningham and Spreadbury, 1998; 

Velayati et al., 2011; Wayne and Hayes, 1996). In the current work we assumed a 

constant cell size and protein density for bacilli grown exponentially and cells in hypoxia. 

Generally, it is important to note that absolute quantification by mass spectrometry-

based proteomics can show a bias against membrane-associated proteins which might 

be less efficiently extracted during the sample preparation procedure.  

 

Metabolic profiling 

To determine intracellular ATP levels, the biomass of 10 ml culture volume was sampled 

by the fast filtration protocol previously reported (Watanabe et al., 2011). Bacteria were 

decontaminated and metabolites were extracted in chloroform:methanol (2:1) at -80°C 

over night. Samples were dried under nitrogen stream, resuspended in 100 µl water and 

10 µl were analysed for the quantification of ATP by ultrahigh pressure liquid 

chromatography coupled to a triple quadrupole tandem mass spectrometer as previously 



 

 

described (Buescher et al., 2010). ATP amounts were normalised to the colony-forming 

unit determined for each sample. Two independent Wayne cultures were analysed for 

each time point. 

Untargeted measurements of metabolites was performed by direct injection mass 

spectrometry using a quadrupole-coupled time of flight instrument (Agilent 6550) at low 

mass-range settings following the published protocol (Fuhrer et al., 2011). The genome 

scale metabolic model of Mtb was used to compile a metabolite reference list. Ions were 

assigned to metabolites using this list and allowing a mass tolerance of 1 mDa and an 

intensity cut-off of 1500 counts as previously described (Fuhrer et al., 2011). For each 

ion, only the metabolite(s) with the highest annotation score was kept, and for each 

metabolite, only one ion with the highest annotation score was kept. The untargeted 

metabolic data was not normalised after data acquisition, but by collecting equal 

amounts of biomass for all samples (sample volume adjusted to the measured OD600). 

 

Subnetwork analysis 

Basis for the subnetwork analysis was a genome-scale metabolic model of Mtb. Only 

reactions of which at least one enzyme was changing significantly (fold change ≥ 1.5, 

p-value ≤ 0.01) were considered. Two reactions that share a metabolite were considered 

as connected. H2O, CO2 and common cofactors were not considered as connecting 

metabolites (Table S4). Shortest path search (Yen, 1971) was performed between each 

two reactions in the resulting reaction-reaction network using the Matlab script 

kShortestPath (http://www.mathworks.com/matlabcentral/fileexchange/32513-k-shortest-

path-yen-s-algorithm) and those with length ≥4 were visualised in Cytoscape. Network 

edges were coloured according to protein abundances (x) normalised to the mean 

values across conditions with the Matlab z-score function (z-score=(x-mean(x))/std(x)). 

Subnetworks were assigned to metabolic classes according to TBDB annotations 

(http://www.tbdb.org) and manually grouped according to their temporal profiles. The 

genome scale model was further used to assign metabolites involved in each reaction to 

the corresponding enzymes. Pearson correlation coefficients were calculated for the z-

scores of metabolites and corresponding enzymes for time profiles with time shifts +/-1 

to capture delayed dependencies.  

 

 

 



 

 

Maximal enzymatic reaction velocity estimation 

Maximal enzymatic reaction velocities (Vmax) were estimated per definition as absolute 

protein quantity multiplied by the enzyme turnover frequency (kcat). Turnover frequency 

coefficients were downloaded from the Brenda enzyme database (http://www.brenda-

enzymes.org). Median values of all reported kcats (or only those reported for Mtb, if 

available) were taken (Table S6). If no kcat was available, 1 was set as default value. 

For the PfkA and PfkB isoenzymes the kcat was calculated based on the activity values 

(PfkA =25.0 [nmol min-1 purified protein mg-1], PfkB =1.7 [nmol min-1 purified protein 

mg-1]) (Phong et al., 2013) and enzyme molar masses (PfkA = 36879.99 [g mol-1], 

PfkB = 35401.37 [g mol-1]) as activity multiplied by molar mass (PfkA = 0.015 sec-1, 

PfkB = 0.001 sec-1). 

 

Statistical analysis and gene set enrichment 

Metabolic pathway definitions were downloaded from the TB database TBDB 

(http://www.tbdb.org). Pathway enrichment was performed for protein set consisting of 

proteins passing the cutoff of absolute fold change ≥ 1.5, adjusted p-value ≤ 0.01. 

P-values were adjusted for multiple hypotheses testing with the Benjamini-Hochberg 

procedure. Gene set enrichment analysis method was adapted from Subramanian et al. 

for proteins and implemented in a Matlab script (Subramanian et al., 2005). A 

hypergeometric test was applied for each subset of size 1 to N (N is the size of the 

changing protein set) from the changing protein set, sorted by one of the following 

characteristics: fold change, absolute change and Vmax change. For each pathway the 

lowest adjusted p-value from tests of different sizes was taken. For time points 

day 20+6h and day 20+48h day 20 was taken as a reference. 
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